Evaluating Recent Progress Toward General-Purpose Language Understanding Models

Machine Learning for Language

To develop a general-purpose neural network encoder for text which makes it possible to solve any new language understanding task using only enough training data to define the possible outputs.

To develop a neural network model that already understands English when it starts learning a new task.

The Technique: Muppets

Large-scale pretrained language models like **ELMo**, GPT, **BERT**, XLNet, **RoBERTa**, and T5 have offered a recent surge of progress toward this goal.

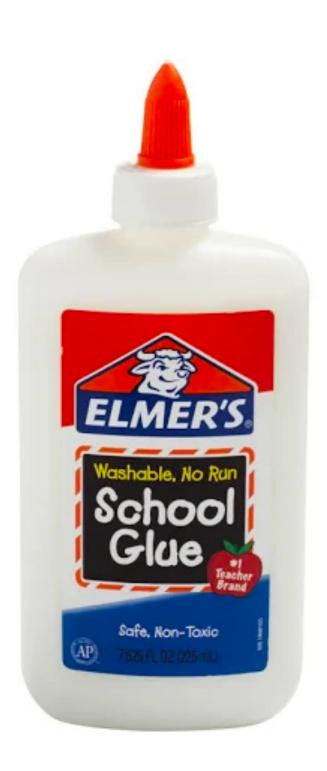
This Talk

- The GLUE language understanding benchmark Wang et al. '19a
- Recent progress and the updated SuperGLUE benchmark Nangia & Bowman '19, Wang et al. '19b
- Detour: A few things we've learned about modern models Warstadt et al. '19, Pruskachatkun et al. '20, Phang et al. '20
- What's next for evaluation? Idle speculation '20

GLUE: What is it?

The General Language Understanding Evaluation (GLUE): An open-ended competition and evaluation platform for general-purpose sentence encoders.

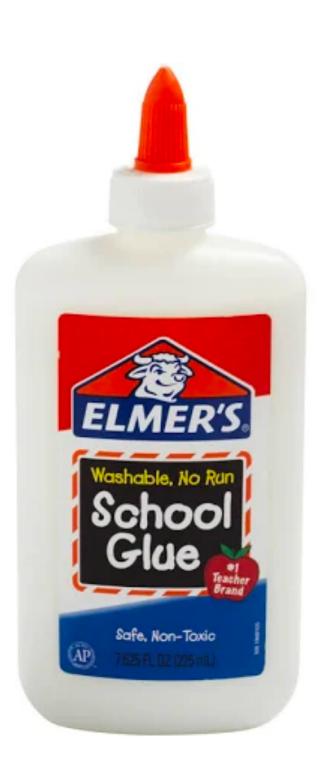
GLUE



Why GLUE?

Increasingly common for researchers outside NLP to evaluate new techniques on language understanding tasks.

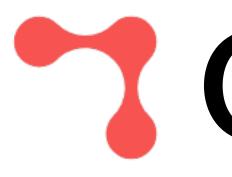
- We can learn a lot this way...
- ... if these researchers evaluate on significant open problems...
- ...which doesn't always happen.



Why GLUE?

GLUE for non-NLP-specialist researchers:

- We provide tasks, metrics, baselines, and code that represent open problems of interest to researchers in NLU.
- We don't enforce any particular experimental design -that's up to the (expert) users.



Nine English-language sentence understanding tasks based on existing data:

- Unsolved \bullet
- Varied training data volume \bullet
- Varied language style/genre \bullet

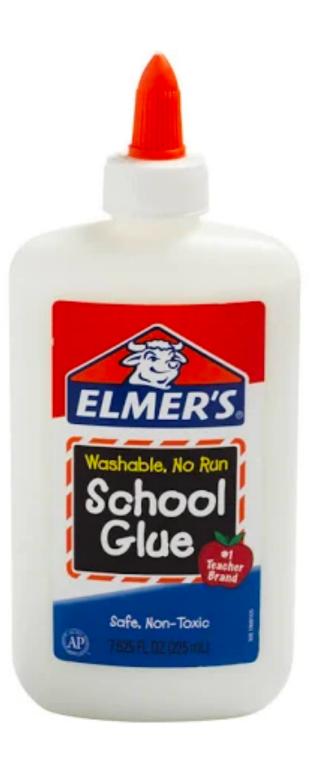
GLUE

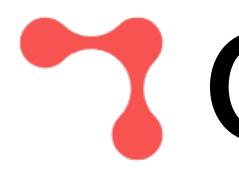


Simple task APIs:

- Only sentence or sentence pair inputs. \bullet
- Only classification or regression outputs. \bullet
- No generation or structured prediction. \bullet

GLUE





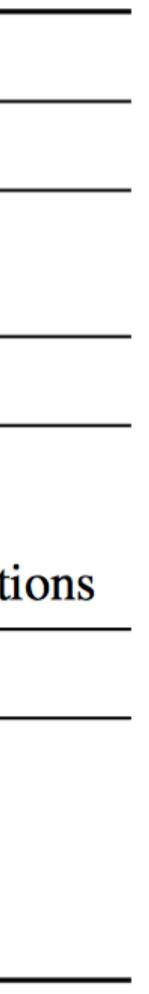
Simple leaderboard API: Upload predictions for a test set

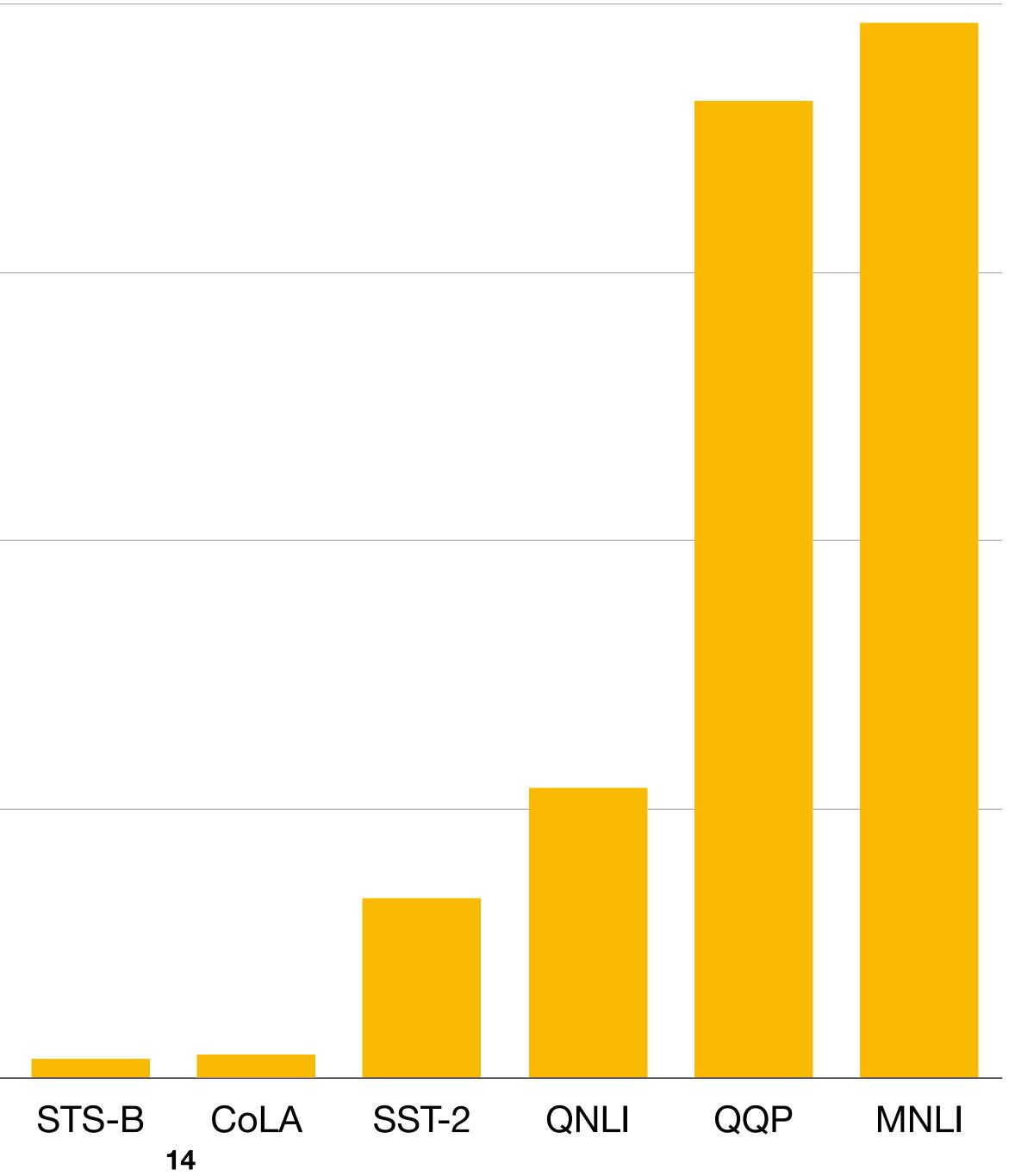
- Usable with any software infrastructure. \bullet
- Usable with any kind of method/model. \bullet
- Allows us to limit use of the test sets.

GLUE

GLUE: The Main Tasks

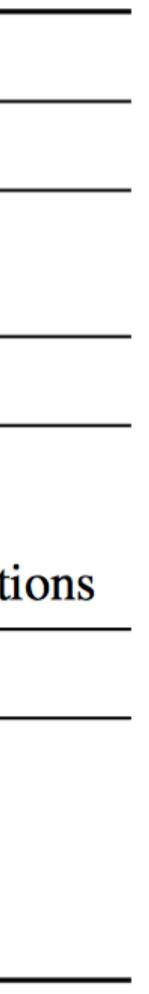
Corpus	Train	Dev	Test	Task	Metrics	Domain
				Single-Senter	nce Tasks	
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews
				Similarity and Par		
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questio
				Inference		
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. fiction books





GLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Domain
				Single-Senter	nce Tasks	
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr.	misc. movie reviews
	07K	072	1.0K	Similarity and Par	acc. aphrase Tasks	
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questio
				Inference		
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. fiction books



GLUE: The Main Tasks

Corpus	Train	Dev	Test	Task Metrics		Domain	
Single-Sentence Tasks							
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews	
Similarity and Paraphrase Tasks							
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questio	
				Inference	Tasks		
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. fiction books	

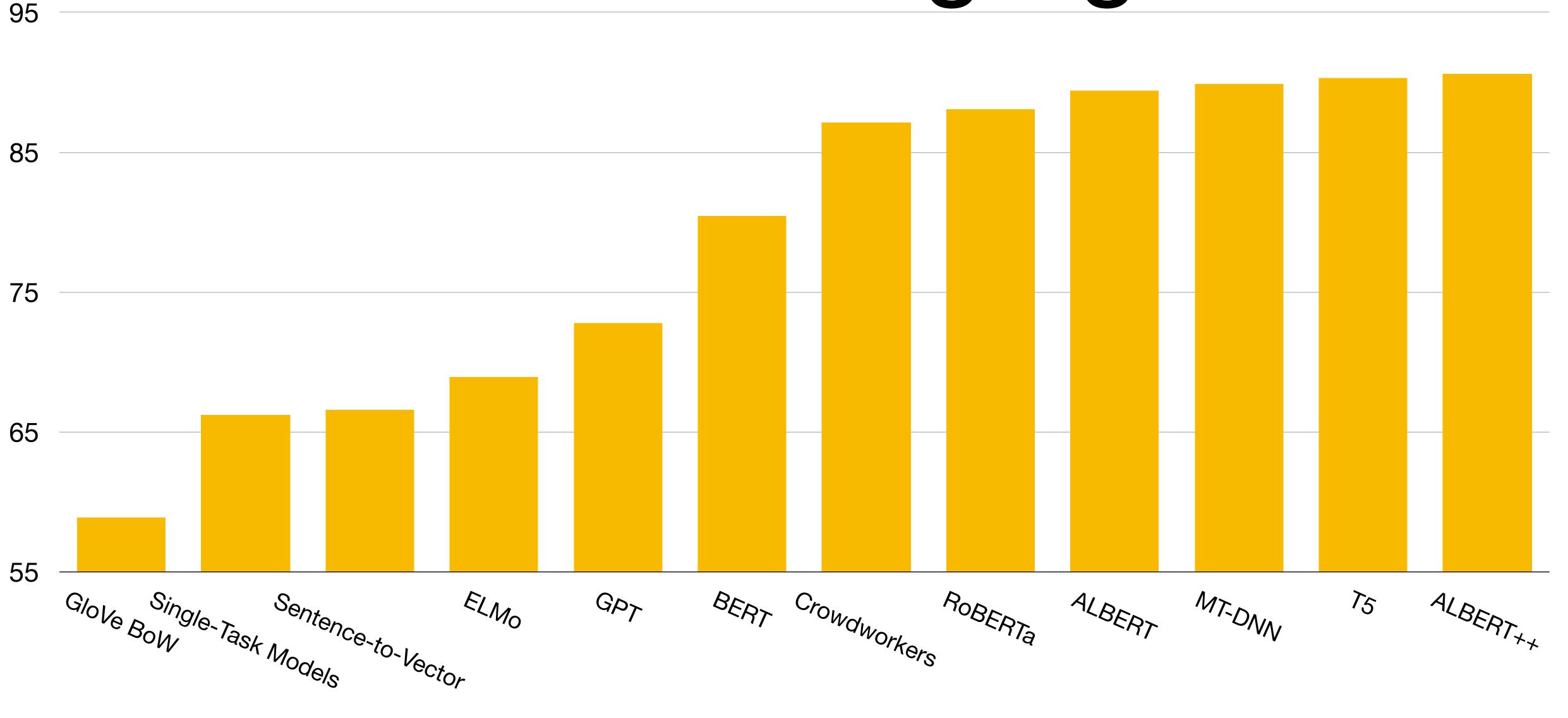
The Recognizing Textual Entailment Challenge

Corpus	Train	Dev	Test	Task	Metrics	Domain					
	Single-Sentence Tasks										
CoLA SST-2	 Binary classification over sentence pairs: Does the first sentence entail the second? Drawn from several of the RTE annual competitions. 										
MRPC STS-B QQP	Text: Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at age 44, according to the Christopher Reeve Foundation. Hypothesis: Christopher Reeve had an accident. no-entailment										
				Interer	ice Tasks						
MNLI QNLI	393k 108k	20k 5.7k	20k 5.7k	NLI QA/NLI	matched acc./mismatched acc. acc.	misc. Wikipedia					
RTE	2.5k	276	3k	NLI	acc.	misc.					
WNLI	634	71	146	coreference/NLI	acc.	fiction books					

Dagan et al. '06 et seq.

GLUE: What methods work?

GLUE Score: Highlights

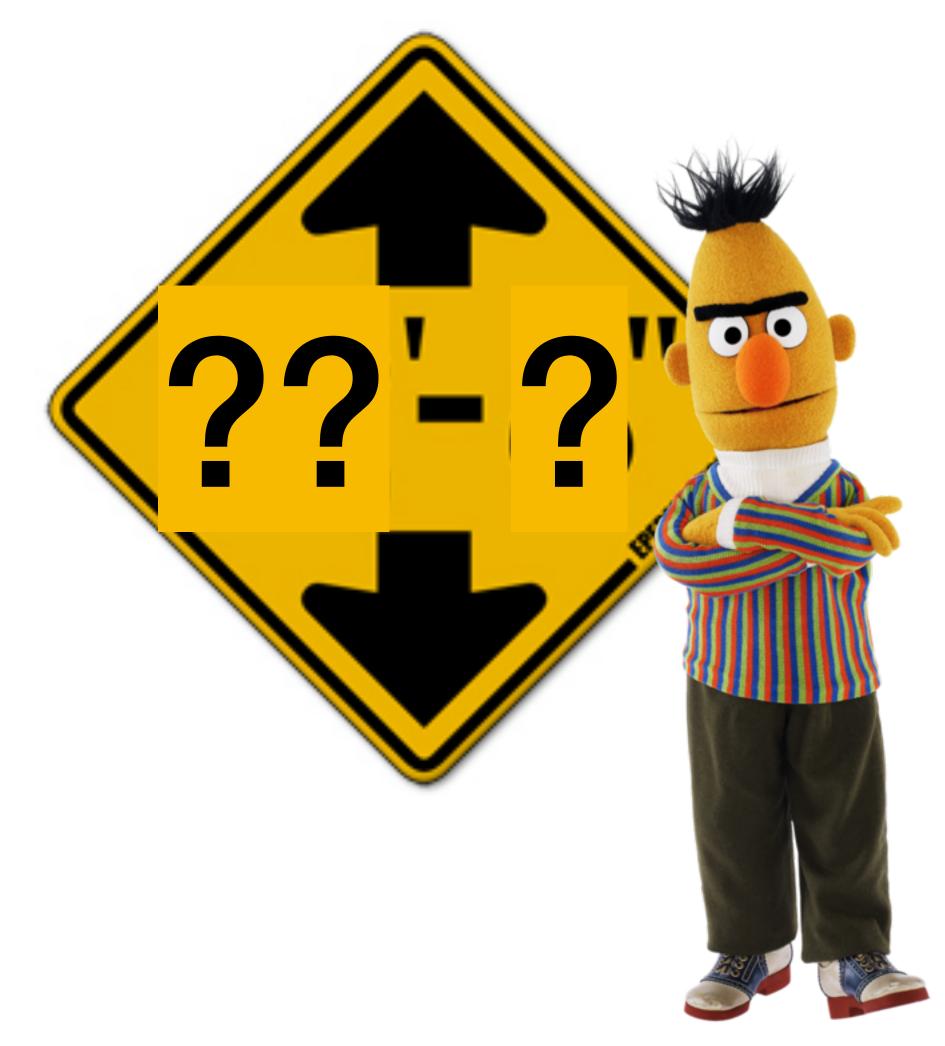


gluebenchmark.com

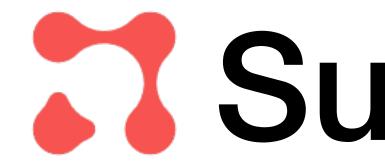
Human Performance Estimate

How much headroom does GLUE have left?

- To compute a conservative estimate for each task:
 - Train crowdworkers.
 - Get *multiple* crowdworker labels for each example, take a majority vote.



Nangia & Bowman '19



We rebuilt GLUE from scratch...

- ...starting with an open call for dataset proposals
- ...yielding 30–40 candidates
- ...which we filtered using human evaluation and BERTbase baselines
- ...and a final set of eight tasks
- ...following a slightly expanded set of task APIs.

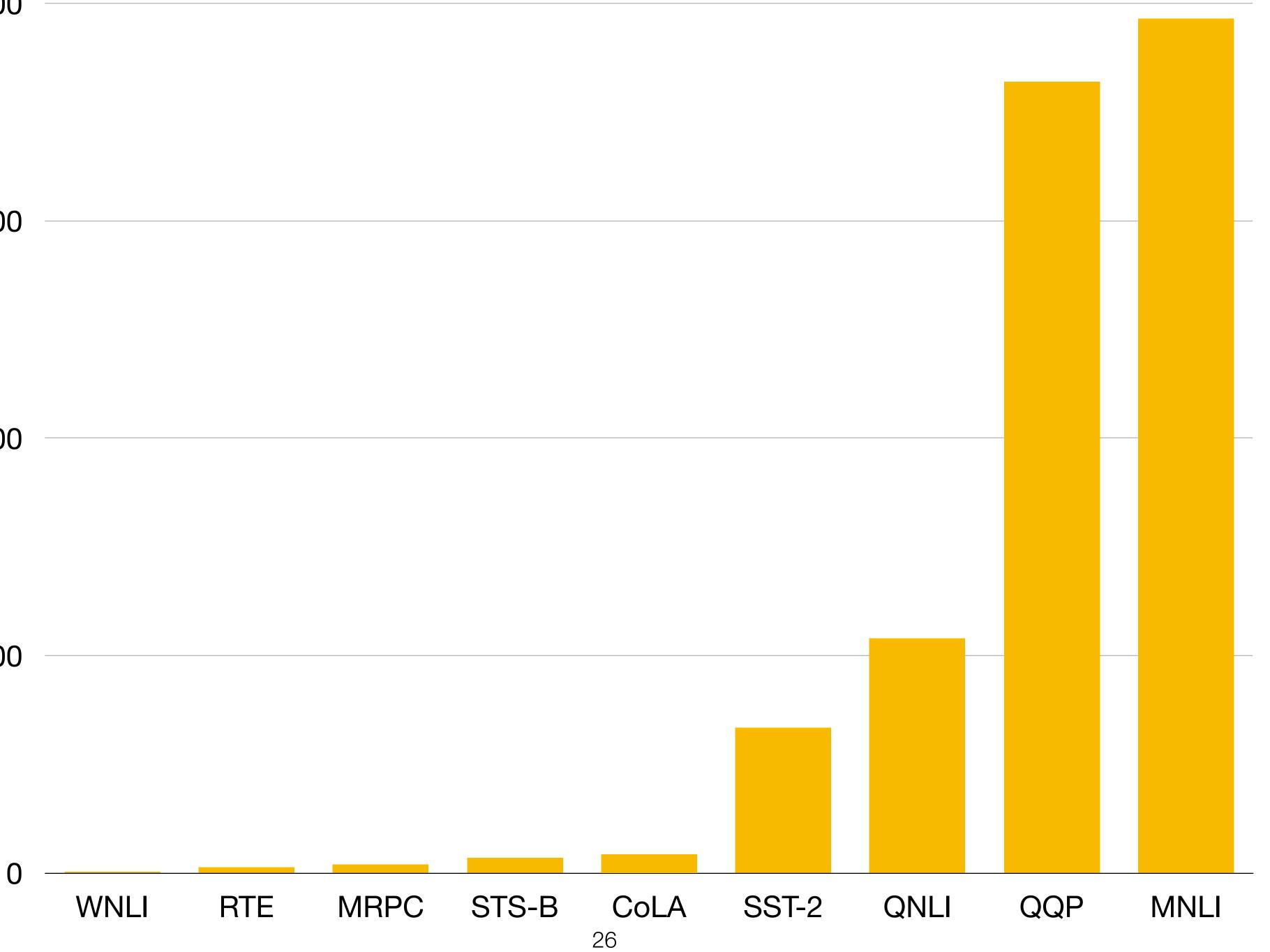
SuperGLUE

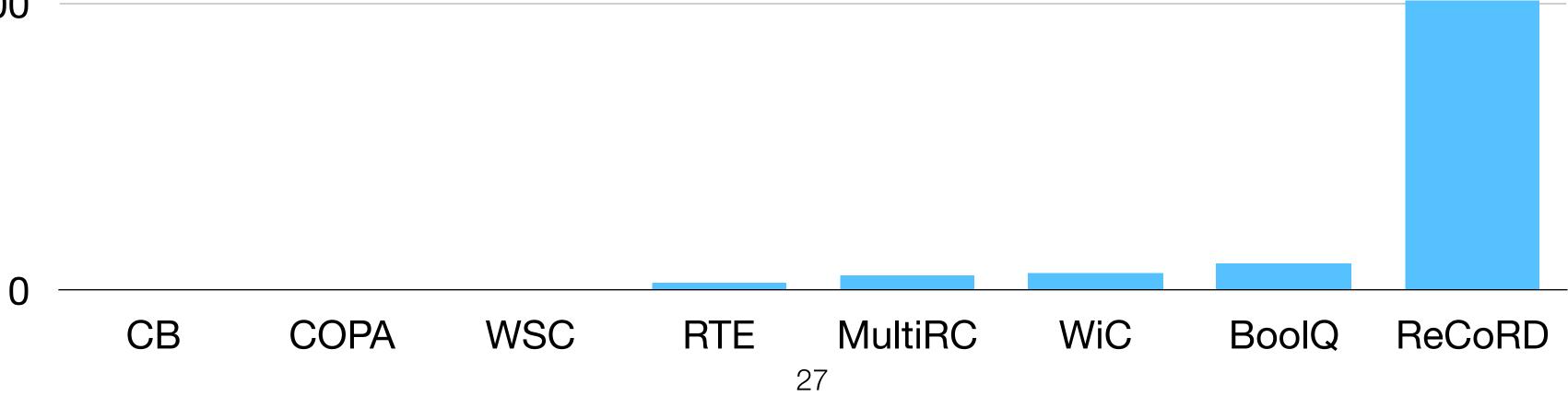
{Wang, Pruksachatkun, Nangia, Singh}, Michael, Hill, Levy & Bowman NeurIPS '19

SuperGLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedia
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

{Wang, Pruksachatkun, Nangia, Singh}, Michael, Hill, Levy & Bowman NeurIPS '19





SuperGLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedia
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

{Wang, Pruksachatkun, Nangia, Singh}, Michael, Hill, Levy & Bowman NeurIPS '19

MultiRC Khashabi et al. '18

Multiple choice reading comprehension QA over paragraphs.

Paragraph: Susan wanted to have a birthday party. She called all of her friends. She has five friends. Her mom said that Susan can invite them all to the party. Her first friend could not go to the party because she was sick. Her second friend was going out of town. Her third friend was not so sure if her parents would let her. The fourth friend said maybe. The fifth friend could go to the party for sure. Susan was a little sad. On the day of the party, all five friends showed up. Each friend had a present for Susan. Susan was happy and sent each friend a thank you card the next week. **Question:** *Did Susan's sick friend recover?* Answers: Yes, she recovered (T), No (F), Yes (T), No, she didn't recover (F), Yes, she was at Susan's party (T)

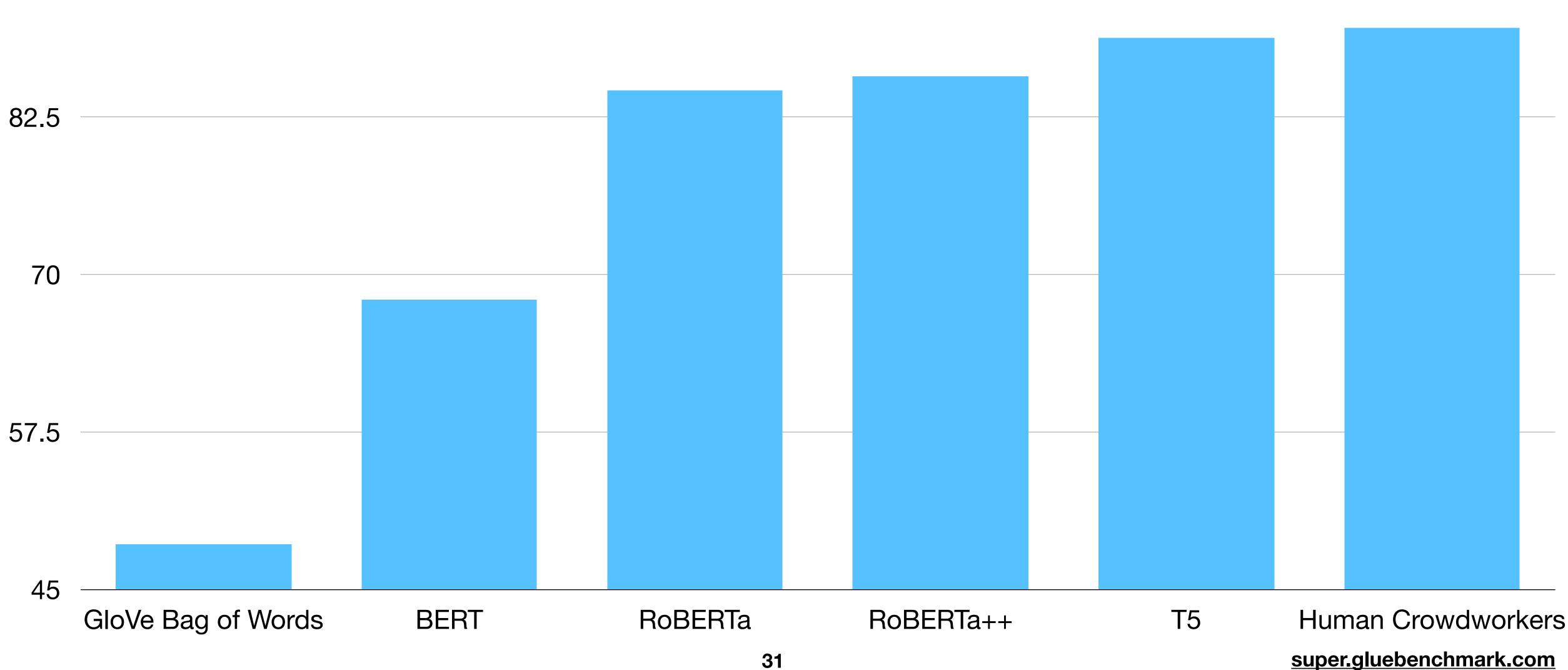
COPA	400	100	500	QA	acc.	blogs, photography encyclopedi
MultiRC	5100	953	1800	QA	$F1_a/EM$	V8
ReCoRD	101k	10k	10k	QA 29	F1/EM	Wang, Pruksachatkun, Nangia, S السطى الالكة Michael, Hill, Levy & Bowman Neurll
RTE	2500	278	300	NI I ²⁹	200	ne n

SuperGLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedia
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

{Wang, Pruksachatkun, Nangia, Singh}, Michael, Hill, Levy & Bowman NeurIPS '19

SuperGLUE Score: Highlights



- Therefore safe to presume that these datasets contain evidence of social bias (see Rudinger et al., EthNLP '17).
- All else being equal, models that learn and use these biases will do better on these benchmarks.
- In SuperGLUE's WinoGender Schema evaluation (Rudinger et al. '18), T5 \bullet is 10x more like than humans to be confused by irrelevant gender cues.
- Mitigating these biases is a major open problem.

GLUE and SuperGLUE: Limitations

GLUE and SuperGLUE use lots of naturally occurring or crowdsourced data.

GLUE and SuperGLUE: Non-Limitations

GLUE and SuperGLUE don't test generation or structured prediction.

language understanding.

These are hand and important problems, but mostly orthogonal to

GLUE and SuperGLUE: Open Issues

We clearly haven't solved NLU.

SuperGLUE includes a broad-coverage NLI diagnostic:

Prepositional phrases section

I ate pizza with olives. I ate olives. entailment

10-point gap between humans and T5!

I ate pizza with some friends. I ate some friends. neutral

GLUE and SuperGLUE: Open Issues

How sure are we that we've solved these NLU tasks for IID test sets?

Two relevant facts:

- \bullet know models aren't great at.
- \bullet (see, e.g., Pavlick and Kwiatkowski)

Are subjectivity and low-agreement making ML models look artificially good?

Popular datasets for NLI, QA, etc. involve lots of phenomena that we

Popular datasets for NLI, QA, etc. have relatively low inter-annotator agreement, and some instances are genuinely subjective. ML models are likely better than humans at predicting the modal human response.

Why does BERT* work so well? What does BERT know?

*Yes, BERT.

What's inside BERT?

In our work on *Edge Probing* (<u>Tenney et al.</u>), we observe that:

- ELMo and BERT both learn nearly perfect features for POS tagging.
- BERT learns better features than ELMo lacksquarefor parsing.
- ELMo and BERT Base do not learn coreference features, but BERT Large does.

What's inside BERT?

In further edge probing studies (Tenney, Das, and Pavlick):

- Lower layers of BERT express features for 'lower level' tasks.
- Higher layers express more abstract/ semantic knowledge.

What's inside BERT?

Evaluations on *handbuilt test sets* (Yaghoobzadeh et al.):

• BERT relies on brittle non-syntactic heuristics for tasks like NLI; but BERT Large much less so than BERT Base.

How much can we trust these conclusions?

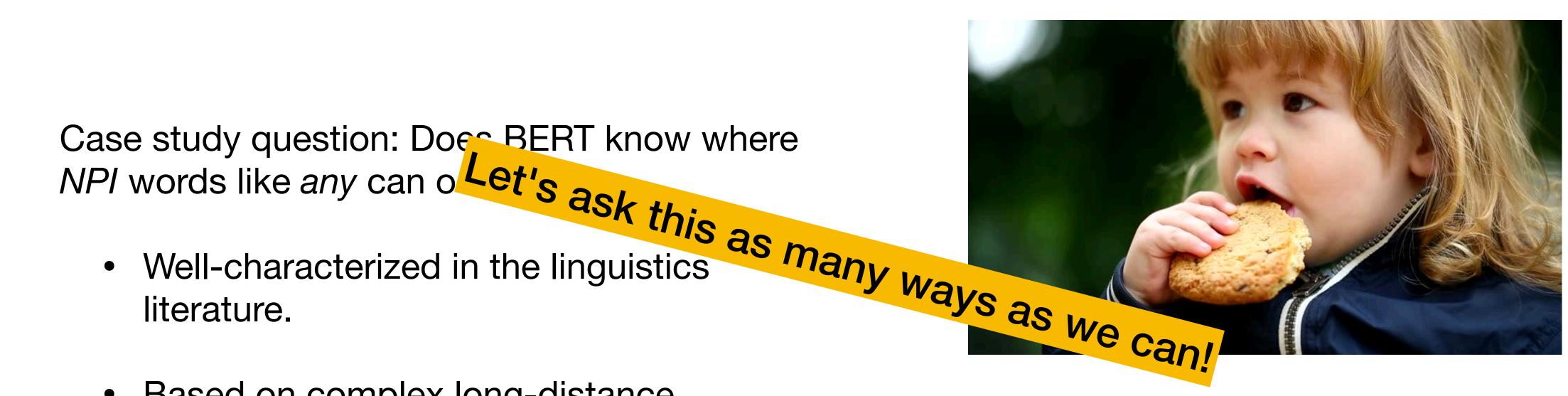
How much can we trust these conclusions?

- Probing studies (loosely defined) like these are a **common tool** for trying to understand what models like BERT know.
- There are many ways to design such a study, and each bakes in substantial assumptions.
 - Edge probing assumes that if a model knows about coreference, then it should be possible to extract that information with a simple MLP model.
- Do different probing methods give us the same answer?

{Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič} & Bowman **EMNLP '19**

Case Study: NPI Licensing

- Based on complex long-distance dependencies with few local cues, so not trivial to learn.



I see kids who are not [eating **any** cookies]. *I see **any** kids who are not [eating cookies].

{Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič} & Bowman **EMNLP '19**

Case Study: NPI Licensing

Do we train on in-domain data?

What performance metric do we use?

Do we use BERT's language modeling head at test time?

Do we fine-tune BERT when training the classifier?

I see kids who are not [eating **any** cookies]. *I see **any** kids who are not [eating cookies].

{Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič} & Bowman **EMNLP** '19

BERT knows a lot about NPIs, but its not perfect.

BERT does better than chance, but not especially well.

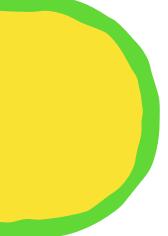
SESAME STREET

BERT knows a lot about NPIs, but its not perfect.

BERT does better than chance, but not especially well.

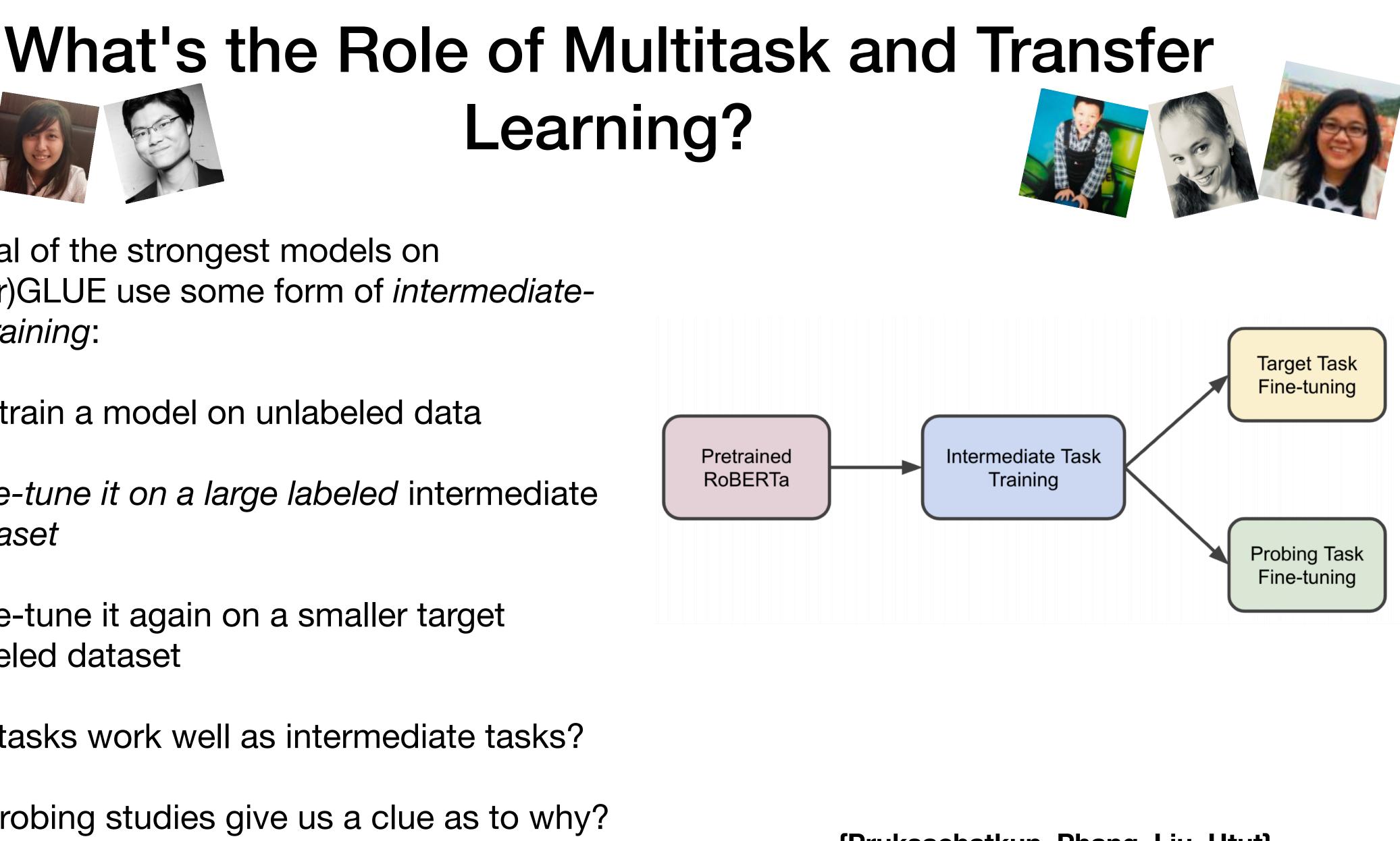
BERT does better than chance, but not especially well.

BERT has complete and perfect knowledge of NPI licensing.



What's the Role of Multitask and Transfer Learning?

- Several of the strongest models on (Super)GLUE use some form of *intermediate*task training:
 - Pretrain a model on unlabeled data
 - Fine-tune it on a large labeled intermediate dataset
 - Fine-tune it again on a smaller target lacksquarelabeled dataset
- What tasks work well as intermediate tasks? \bullet
- Can probing studies give us a clue as to why?



{Pruksachatkun, Phang, Liu, Htut}, Zhang, Pang, Vania, Kann & Bowman **ACL '20**

46

When does Intermediate-Task **Transfer Learning Work?**

		QAMR	CSenseQA	SciTail	CosmosQA	<mark>S</mark> ocialIQA	CCG	HellaSwag	QA-SRL	SST-2	QQP	MNLI	Baseline Performance
	СВ	-4.0	-0.4	-6.2	-0.4	-21.7	-12.2	-3.1	-7.2	-1.2	-31.0	-0.4	99.1
Target	СОРА	-4.0	8.7	4.3	6.0	-3.7	-20.7	6.7	-3.7	-2.0	0.7	-0.7	86.0
	WSC	-0.3	0.0	1.3	2.9	-4.8	-3.2	3.6	4.8	2.6	-3.8	0.3	67.3
	RTE	0.6	3.4	3.4	5.1	-4.3	-18.2	4.8	1.1	2.6	-2.4	3.1	83.5
	MultiRC	2.4	7.9	2.6	10.1	-10.6	-8.1	6.8	2.6	1.1	-4.2	6.5	47.4
La]	WiC	-1.3	0.1	2.5	1.7	-2.0	-1.1	0.1	2.1	-6.4	1.4	0.9	70.5
	BoolQ	-0.1	0.9	0.1	1.1	-2.8	-10.6	0.7	0.0	0.9	-4.2	1.4	86.6
	CSenseQA	-4.7	-1.6	-2.6	0.1	-7.8	-12.0	0.4	-5.1	-0.9	-7.6	-2.6	74.0
	CosmosQA	-2.5	-0.1	-2.1	-0.4	-9.1	-6.9	-0.0	-3.0	-0.0	-8.4	-0.5	81.9
	ReCoRD	-4.0	-0.0	-1.5	-0.1	-12.4	-6.1	0.2	-4.7	-0.5	-11.9	-1.6	86.0
	Avg. Target	-1.8	1.9	0.2	2.6	-7.9	-9.9	2.0	-1.3	-0.4	-7.1	0.7	78.2

RoBERTa with Intermediate-Task Training on...

{Pruksachatkun, Phang, Liu, Htut}, Zhang, Pang, Vania, Kann & Bowman ACL '20

What can Probing Tasks Tell us?

(SuperGLUE+)

Target

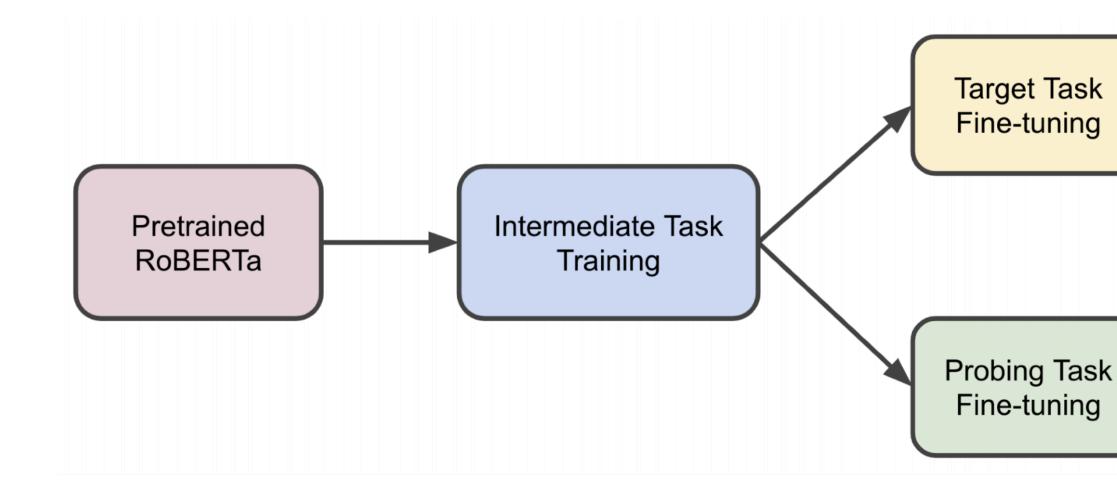
CosmosQA CSenseQA **EP-Const** MultiRC EP-Core ReCoRD EP-NER EP-POS EP-SRL BoolQ COPA wsc wic RTE B .74 .72 .82 .69 1 CB .73 .71 .66 .67 COPA 1 WSC .83 .85 .68 .67 .71 .67 1.86 RTE .78 .86 MultiRC .73 .79 .76 .67 .66 1 WiC 1 .83 .79 1 .79 .80 .76 BoolQ .74 .74 .74 .85 .76 CSenseQA .72 .66 .85 .83 .79 1 .61 .63 .80 .85 1 .70 .68 .67 .86 CosmosQA .82 .76 .83 .86 1 ReCoRD .69 .67 .66 .71

						Pr	ob	in	g						1			
EP-SPR1	EP-SPR2	EP-DPR	EP-Rel	EP-UD	SE-SentLen	SE-WC	SE-TreeDepth	SE-TopConst	SE-BShift	SE-Tense	SE-SubjNum	SE-ObjNum	SE-SOMO	SE-CoordInv	AJ-CoLA	AJ-Wh	AJ-Def	AJ-Coord
.70	.72	.66		.74					.63				.75	.64	.71			
													.74					
		.63																
	.66			.71									.74	.80	.71			
	.74			.71									.73	.79				
.70	.69			.76					.68				.75	.82	.78			
.77	.68	.69		.80					.72				.88	.76	.76			
.76	.66	.74		.81					.84				.87	.80	.83			
.77	.69	.73		.84					.76				.83	.79	.71			

{Pruksachatkun, Phang, Liu, Htut}, Zhang, Pang, Vania, Kann & Bowman ACL '20

Ongoing Work: Stay Tuned

- Since there are signs of *catastrophic forgetting*, does it help to mix pretraining updates in during intermediate-task training?
 - Tentatively: No. Why?
- How much do these results vary across different pretrained models?



49

Does this Work with Crosslingual Transfer? (English intermediate and target training; Non-English evaluation)

					Ta	arget tasks					
		XNLI	PAWS-X	POS	NER	XQuAD	MLQA	TyDiQA	BUCC	Tatoeba	Avg.
	Metric	acc.	acc.	<i>F1</i>	<i>F1</i>	F1 / EM	F1 / EM	F1 / EM	<i>F1</i>	acc.	_
	# langs.	15	7	33	40	11	7	9	5	37	-
	XLM-R	80.1	86.5	75.7	62.8	76.1 / 60.0	70.1 / 51.5	75.7 / 61.0	71.5	31.0	67.2
	ANLI ⁺	- 0.8	+ 0.4	- 0.9	- 0.8	- 0.6 / - 0.1	- 0.6 / - 0.8	+ 2.2 / + 3.1	+20.1	+49.8	+ 7.7
	QQP	- 1.4	- 2.1	- 5.6	- 6.9	- 3.8 / - 3.8	- 3.9 / - 4.4	- 0.6 / - 0.2	+20.2	+51.7	+ 5.3
V	SQuAD	- 1.4	+ 0.7	- 1.6	+ 0.2	<u>+ 1.1 / + 1.3</u>	<u>+ 1.9 / + 2.5</u>	<u>+ 5.6 / + 7.4</u>	+19.7	+46.9	+ 8.3
No MLM	HellaSwag	- 0.3	+ 0.8	<u>- 0.7</u>	- 1.0	- 0.3 / + 0. 1	- 0.1 / + 0.2	+ 1.9 / + 1.3	+20.4	+49.9	+ 7.9
N	CCG	- 2.6	- 3.4	- 1.5	- 0.7	- 1.5 / - 1.3	- 1.6 / - 1.5	+ 0.4 / + 0.7	+ 5.5	+38.9	+ 3.7
Ž	CosmosQA	- 2.9	<u>+ 1.5</u>	- 1.2	- 0.9	+0.2/+0.3	+ 0.4 / + 0.5	+ 2.7 / + 3.8	+13.2	+28.8	+ 4.7
	CSQA	- 2.9	- 0.6	- 1.7	- 0.5	+ 0.2 / + 0.4	+ 1.6 / + 1.6	+ 3.0 / + 4.1	+11.3	+33.1	+ 4.9
	Multi-task	- 1.6	- 0.2	- 2.3	- 2.4	- 2.6 / - 3.1	- 1.4 / - 1.7	+ 1.9 / + 1.9	+18.4	+48.3	+ 6.4
				XT	REME]	Benchmark Sc	ores [†]				
XL	M-R (Hu et al., 2020)	79.2	86.4	72.6	65.4	76.6 / 60.8	71.6 / 53.2	65.1 / 45.0	66.0	57.3	68.1
XL	M-R (Ours)	79.5	86.2	74.0	62.6	76.1 / 60.0	70.2 / 51.2	75.5 / 61.0	64.5	31.0	66.1
	r Best Models [‡]	80.4	87.7	74.4	63.4	77.2 / 61.3	72.3 / 53.5	81.2 / 68.4	71.9	82.7	74.2
Hu	iman	92.8	97.5	97.0	-	91.2 / 82.3	91.2 / 82.3	90.1 / -	-	-	-

Phang, Htut, Pruksachatkun, Liu, Vania, Kann, Calixto & Bowman, arXiv 2020

Interim Conclusions

- evaluation tasks.
- only just starting to understand why they work.

Modern pre-trained transformers, especially with intermediate-task training, outperform non-expert humans on nearly all established NLU

These models still fail frequently, sometimes in bizarre ways, and we're

Back to evaluation...

build another GLUE-style benchmark again soon.

Is our ability to build models improving faster than our ability to build hard evaluation sets?

Evaluation: What's Next?

There are plenty of big open problems in NLU, but doesn't seem possible to

Give up and work on something else?

- I guess?
- 0r...

Evaluation: What's Next?

Evaluation: What's Next?

SotA models?

- Good source of data for training...
- Okay source of data for local hill-climbing evaluation...
- ...but using these datasets as benchmarks risks encouraging models that are different but not better.
- Mitigated by fast iteration times, but logistics get complicated.

Use *adversarial filtering* to semi-automatically create datasets that are hard for

test data to target weaknesses.

- Similar risks, though to a lesser degree.

Evaluation: What's Next?

Build growing benchmarks like Build-it-Break-it or ORB, where experts can add

Some risk that we lose sight of the task we're trying to solve.

new tasks.

- Likely to encourage good representations...
- ...but may not reflect the setting that we're interested in.

Evaluation: What's Next?

Restrict the task training sets, or focus on *zero-shot* or *few-shot* adaptation to

Build big, high-quality datasets?

- Aim for *hard* examples with human performance >99%. \bullet
- with *near*-perfect accuracy.
- Doable! But slow, expensive, risky work. \bullet

Evaluation: What's Next?

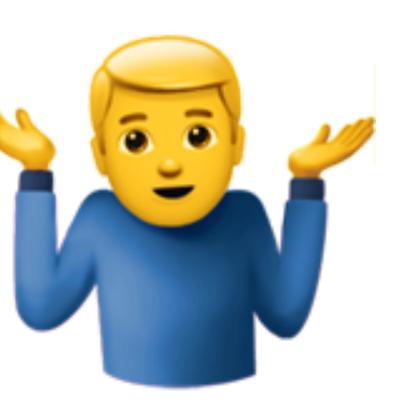
Aim for 100k+ test examples, so we can still productively compare models

One More Open Question

that it's worthwhile to hill-climb on them?

Is it possible to build benchmarks for bias that are robust and realistic enough

Evaluation: What's Next?



See cited papers for full project details. This presentation does not reflect the position of the sponsoring organizations.

SCHMIDT FUTURES

Thanks!

