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Abstract

We propose and compare a number of metrics
to capture the degree to which words are re-
stricted in the contexts in which they can oc-
cur. We re-frame the problem of contextual
restrictedness, and introduce the use of vec-
tor space models based on syntactic dependen-
cies. We show that our most successful met-
ric, residualized entropy, is quite successful
in selecting highly collocationally restricted
words, and is predictive of animacy.

1 Introduction: Collocational
restrictedness

Words can freely co-occur with one another to ex-
press novel meanings, resulting in a combinatorial
explosion for strings of more than one word, and
sparse attestation for many strings even in large cor-
pora. This productivity is a defining property of hu-
man language.

Productivity in natural language, however, is not
absolute. Unlike formal languages, natural lan-
guages impose complex gradient constraints on the
combination of terms. For instance, the adverbamok
appears to have a highly restricted distribution: it
can only modify the verbrun. The phraserun amok
is common and easily interpreted by humans, while
the phraseblossom amokis unattested and unlikely
to be understood by humans without some effort. Its
distribution is nevertheless not categorical: in the
NYT Gigaword corpus,amokis attested very rarely
modifying the verbgo, as ingoes amok. In contrast,
an adverb of comparable meaning,insanely, can
and does appear modifying a much broader range

of verbs. Productivity is limited in that some words
have more restricted distributions than others.

We explore productivity in language by develop-
ing a measure of the distributional freedom or re-
strictedness of words. Previous work, under the
headings of collocation detection and selectional
preferences, has focused on characterizing there-
lationship between words. Building on this work,
we develop and evaluate several summary measures
to describe contextual restrictedness as a quantita-
tive lexical property of individual words. Our met-
rics are based on vector space models with labeled
grammatical dependencies as features.

Equipped with a general, reliable measure of con-
textual restrictedness, it should be possible to ex-
plore scientific questions about productivity and its
correlates in languages. For instance, one can deter-
mine whether the grammars of different languages
include more gradient or more categorical contex-
tual restrictions, perhaps necessitating different pro-
cessing strategies, or one can investigate if colloca-
tionally restricted words are more or less likely to
change in meaning over time. In this project, we
investigate one potential correlate of contextual re-
strictedness: animacy. We hypothesize that animate
nouns, since they represent entities capable of a va-
riety of actions, may have freer distributions, while
inanimate nouns may have more restricted distribu-
tions.



1.1 Background: Previous attempts to capture
the distributional properties of individual
words

1.1.1 Contextual Distinctiveness

McDonald and Shillcock (2001) propose a con-
textual distinctiveness (CD) metric—a measure of
how much a word’s contextual distribution differs
from that of a typical word. It appears to constitute
the first attempt to extract a meaningful property of
individual words from their co-occurrence distribu-
tions, so it is the most immediate precedent for our
work.

Their metric defines the context of a word as a
vector of counts of lemmas appearing in a k-word
window around the target word, as in Lund and
Burgess (1996). They then define the CD of a lemma
w as the Kullback-Leibler divergence from the over-
all distribution of lemmas to the distribution ofw,
both calculated as maximum-likelihood estimators
over their corpus.

CD(w) = D(P (c)||P (c|w))

=
n∑

i=1

P (ci|w) log2
P (ci|w)

P (ci)

(1)

Strictly speaking, this measures contextualdis-
tinctiveness, or the unusualness of a word’s con-
texts as compared to the average word, not contex-
tual restrictedness, though the two may end up cor-
related empirically. It is possible, for example, that
a word can co-occur freely with a wide range of
infrequent and otherwise restricted words, but few
frequent ones, giving it a high contextual distinc-
tiveness and but relatively little contextual restrict-
edness.

McDonald and Shillcock (2001) motivate their
metric with two studies. The first successfully shows
that CD is much more closely correlated with sub-
ject response times in a lexical decision task (rapidly
differentiating words from non-words) than pure
word frequency. This result is replicated in Baayen
(2010). The authors also compare CD with six other
lexical properties defined without reference to a
corpus—Concreteness, Context Availability, Num-
ber of Contexts, Ambiguity, Age of Acquisition and
Familiarity—and find only an inverse relationship
with ambiguity.

1.1.2 Selectional Strength

A similar measure has been applied to describe
the selectional preferences of verbs. For instance,
Resnik (1997) calculates a “selectional strength”
SelStr for each verb, a measure of how restricted
its objects are. The equation is:

SelStr(v, r) = D(P (c|v, r)||P (c|r))

=
∑

c∈C

P (c|v, r)log
P (c|v, r)

P (c|r)

(2)

where c is a noun’s WordNet class,v is the verb
or predicate, andr is the relation between verb and
noun (in this case the direct object relation). This
measures the extent to which a knowing a verb and
its relation to a noun changes the probability distri-
bution of semantic classes for that noun. The verb’s
selectional preference for a particular object is just
that object’s contribution to the selectional strength.

Erk et al. (2010) show that Resnik (1997)’s
SelStr generalizes well to describe restictedness in
other grammatical relations. They calculate “inverse
selectional preferences”, the extent to which know-
ing a noun and a relation change the probability dis-
tribution of verbs, measuring the distribution over
lemmasW rather than WordNet classesC. The pri-
mary advantage of these approaches over those of
McDonald and Shillcock (2001) is the use of gram-
matical relations in the vectors describing the con-
texts of a word, an idea originating from in Grefen-
stette (1993), who shows that vector space mod-
els incorporating relations are more able to select
words that have the same syntactic and semantic cat-
egories.

1.1.3 The Frequency Problem

An ever-present confound for these information-
theoretic measures of restrictedness is frequency.
Low-frequency words are likely to appear spuri-
ously distinct because of measurement error. Mc-
Donald and Shillcock (2001) deal with this issue
by throwing out much of the data; they only con-
sider the 500 most frequent words as context words,
and do not consider target words with frequency less
than 25. We aim for a measure that is more able to
describe the contexts of low-frequency words.



2 Methods

2.1 Vector Space Model

We model the context of a target word as a vector
of counts of context words with labeled grammatical
relations. We only include context words that appear
in some grammatical relation with the target word.
We believe the use of labeled dependencies is cru-
cial to the quality of our results. The wordbeholder
may appear adjacent to any number of words, but
in nearly all its appearances, it stands in a specific
grammatical relation to the wordeyeas ineye of the
beholder. Collapsed labeled dependencies capture
that relation asprep of(eye, X)and allow a more pre-
cise account of the restrictedness ofbeholder. Two
sample vectors in this space are shown here:

prep of(eye, X) nsubj(smell, X) dobj(wear, X)
beholder 100 0 0

undershirt 0 50 25

Table 1: Two words represented with invented counts in
a simplified version of our vector space.

In addition to using raw counts, we also apply
two weighting schemes to the counts in our vectors:
positive pointwise mutual information (Turney et al.,
2010, PPMI) and thet statistic of Curran and Moens
(2002).

2.2 Data

We test our model on the New York Times section
of the Gigaword English Text Corpus (Graff et al.,
2007), a collection of 914 million words of news text
from 1994–2006. The corpus is not a perfectly bal-
anced sample—it contains a substantial number of
duplicate texts which we were not able to filter out.

We began with a version of the corpus that had
been parsed by Nate Chambers at Stanford using
the Stanford Parser (Klein and Manning, 2003), and
extracted lemmas using the accompanying Stanford
lemmatizer. We then converted the parses to col-
lapsed typed dependency form (de Marneffe et al.,
2006), annotated with part of speech tags and lem-
mas, yielding representations of the following form:

nsubj(’re|be∧VBP-14, you|you∧PRP-13)

Lemmatizing fits our intuition that contextual re-
strictedness should hold equally of every inflectional
variant of a word (but not every derivational variant:

totem=totems6=totemic), and also helps to reduce
the considerable problem of data sparsity for the rel-
atively infrequent words that we are interested in.
POS tagging enables us to at least partially alleviate
the serious problem of homonyms, which show dif-
ferent interactions with context. Full-fledged word
sense disambiguation may have better suited this
task, but it was too unreliable and too computation-
ally intensive to be practical for this project.

The lemmatization and dependency building op-
erations were sufficiently time-intensive that we
plan to make our version of the corpus available
within the NLP group.

2.2.1 Filtering the Data

When building our final vector space model, we
excluded all collapsed prepositional relations. We
had experimented with including them, but found
that this introduced considerable noise due to parse
errors, and that freedom in prepositional relations
tended to drown out restrictedness in other rela-
tions. For example, the wordwreakshould receive
a high restrictedness rating because its direct object
is almost alwayshavoc, but one can also talk about
wreaking havoc inany place, orwreaking havoc
with any instrument. Each of these prepositional
phrases would be coded as an independent context
dimension, and we found that this resulted in sur-
prisingly low restrictedness scores.

Furthermore, several nouns with truly restricted
distributions with respect to prepositions do not
have restricted distributions with respect to col-
lapsed prepositional relations. The wordlot appears
in the binomial quantifier phrasea lot of followed
by any noun. Using relations includingprep of, we
find that lot is one of the freest words in the lan-
guage. While this is an interesting observation about
the constructiona lot of X, it does not represent the
word-based restrictedness which we are attempting
to measure here.

2.3 Proposed Metrics

We apply the KL distinctiveness measures of (Mc-
Donald and Shillcock, 2001; Resnik, 1997; Erk et
al., 2010) to our data as well as a simple measure of
entropy over the context counts. Entropy is a more
direct measure of freedom and restrictedness, rather
than distinctiveness, as it simply quantifies the un-



certainty about a word’s context. In order to get
a value which increases with increased restricted-
ness, we add the (negative) raw entropy to 20. Be-
cause these information-theoretic measures are all
highly correlated with frequency, we also calculate
the residuals of these measures after controlling for
log frequency in a linear regression.

In addition to the information-theoretic measures,
we also test cosine distinctiveness, which is the co-
sine similarity of a lemma from the centroid in dis-
tributional space (the sum of all contextual vec-
tors), subtracted from one to normalize directional-
ity. This is an analogue of KL distinctiveness which
we suspected to be less influenced by frequency.

We finally adapt a measure of morphological pro-
ductivity, Baayen’sP (Baayen, 2001). Applied to
measure the productivity of the English prefixpre,
Baayen’sP is the number of hapax legomena (words
occuring exactly once) with the prefixpre, divided
by the token frequency of all words with the prefix.
This is also known as vocabulary growth rate, and
will be low for restricted prefixes and high for un-
restricted ones. To measure the growth rate of the
contexts of a word, we count the number of contexts
with frequency 1 and divided by the sum count of all
contexts.

2.4 Evaluation

In order to evaluate our metrics, we compiled up a
list of 18 clearly restricted words (shown in blue),
such asbeholder, that appear almost exclusively in
fixed phrases. We manually checked that the distri-
bution of each word in the NYT Gigaword is cate-
gorical or overwhelmingly restricted. We also ex-
amine words of similar semantics to the restricted
words (shown in black); in this case the semantic
match forbeholderis observer. Also we collected
words of similar frequency and roughly similar se-
mantics to the restricted words (shown in red), in
this caseoverseer. The ability of the metrics to dis-
criminate between restricted words and their low-
frequency pairings is crucial.

For this task we use data that is not lemmatized, so
that we can determine if inflectionally related words
(i.e. wreakvs. wreaks) receive similar scores. The
prep of relation was included in order to capture cer-
tain idioms. A list of test words is provided below.
In order to numerically evaluate the results of this

task, we calculate the number of restricted words
found in the top 15 results from each metric, and
the number of restricted words found in the top 5.

Since the number of test items is so small, and
since we are not tuning any statistical parameters,
we did not explicitly divide the data into develop-
ment and test sets for this task. We do, however,
evaluate each metric independently on nouns and ad-
jectives, and on verbs and adverbs, providing some
sense of how well the performance of each metric
generalizes to different cases. Furthermore, after se-
lecting the metrics that perform reasonably on this
toy task, we then sanity-check those metrics infor-
mally by inspecting the words given the highest re-
strictedness scores in a large lexicon.

Finally, we use the most successful metrics to pre-
dict the animacy class of nouns, and determine if dis-
tributional restrictedness is informative for this clas-
sification task.

3 Results

3.1 Distinguishing Restricted Words from
Infrequent Words

Figure 1 shows our set of nouns and adjectives
sorted by the scores assigned to each word by some
of our metrics. Figure 2 shows scores assigned to
verbs and adverbs.

Overall, our new measures, cosine distinctiveness
and growth rate, do not stand out as better than other
measures. We do not consider them in further anal-
yses. The raw KL measure, which McDonald and
Shillcock (2001) proposed for contextual distinc-
tiveness, is also not among the best. The best re-
sults for a KL divergence-based metric come from
weighting the counts according to the t-statistic,
while the best overall scores come from the entropy
of raw counts, achieving 5/5 accuracy in the top 5
words and 11/12 recall in the top 15.

The number of restricted words in the top 15 and
top 5 ranked words for for metrics are given in table
2 and table 3.

The overall best measure appears to be the en-
tropy of contexts. Raw KL distinctiveness does not
perform especially well at distinguishing restricted
words from infrequent ones, but its performance is
competitive when counts are reweighted by PPMI
or by thet statistic.



Top 15 Raw counts PPMI t-Test
KL Distinctiveness 7 10 10
Entropy 11 10 10
Cosine Dist. 8 10 6
Growth Rate (P ) 7

Top 5 Raw counts PPMI t-Test
KL Distinctiveness 3 3 4
Entropy 5 3 4
Cosine Dist. 3 3 4
Growth Rate (P ) 3

Table 2: The number of idiomatically restricted nouns
and adjectives in the top 15 and top 5 most restricted
words according to four metrics.

Raw counts PPMI t-Test
KL Distinctiveness 3 4 4
Entropy 4 4 4
Cosine Dist. 3 4 4
Growth Rate (P) 0

Table 3: The number of idiomatically restricted verbs and
adverbs in the top 5 most restricted words according to
four metrics. The scores for the top 15 are not shown,
because all metrics place the 6 restricted words in this set
into the top 15.

Baayen’sP succeeds in not confusing infrequent
nouns with restricted ones, but it confuses restricted
words with the control words such asdamageand
close. Its performance is good but not better than
entropy or t-test weighted KL distinctiveness. It also
performs very poorly for ranking verbs and adverbs.

3.2 Finding Restricted Words in the Wild

Figure 3 shows the ten most restricted words in a
large lexicon according to our two most successful
metrics.

These metrics both find certain obviously re-
stricted words, such ascardiac arrest, almamater,
andvicepresident, as well as rediscovering some of
our original test words, such asforegone, amok, and
wreak.

Upon examination, some of the more suspect
words in the entropy list do turn out to be highly re-
stricted in the corpus, for instancelovedas an adjec-
tive appears highly frequently in the contextloved
one, andwide as an adverb appears mostly in the
contextwide open. The wordunearnedappears cat-
egorically in the phraseunearned run, a baseball
term.Olive, misparsed as an adjective, appears over-
whelmingly in the phraseolive oil.

PPMI KL:
haywire
amok
roughshod
wreaks
crazily
masquerade
legalizing
wreaking
harshly
pollute
wreak
gasp
do
tosses
scream

Pos. t-Test KL:
roughshod
haywire
wreaks
masquerade
amok
wreaking
legalizing
pollute
wreak
gasp
crazily
do
harshly
tosses
scream

Raw Entropy:
amok
haywire
wreaking
wreaks
harshly
wreak
legalizing
roughshod
masquerade
crazily
pollute
do
gasp
tosses
does

Figure 2: The top 15 restricted verbs and adverbs accord-
ing to selected metrics. Blue words are highly restricted;
red words are unrestricted but low-frequency words.

Pos. t-Test KL:
oath∧NN
wide∧RB
arthroscopic∧JJ
importantly∧RB
foregone∧JJ
hiding∧NN
insatiable∧JJ
saturated∧JJ
mater∧NN
pairing∧NN
cardiac∧JJ
downfall∧NN
unearned∧JJ
stunned∧JJ
knock∧NN

Raw Entropy:
arthroscopic∧JJ
starring∧JJ
unearned∧JJ
loved∧JJ
integral∧JJ
foregone∧JJ
wide∧RB
mater∧NN
saturated∧JJ
unanswered∧JJ
vice∧NN
olive∧JJ
cardiac∧JJ
rectangular∧JJ
amok∧RB

Figure 3: The top 15 most restricted words in our lexicon
according to two of our best metrics.

The difference in function between the entropy
and KL measure is apparent in these results. KL
is a measure of distinctiveness; entropy is a mea-
sure of restrictedness. Thus the wordoath receives
a high KL score because it appears with an unusual
set of words, such asswearand take, although it is
relatively free to appear with any of these unusual
words. Some of the highly-ranking KL results re-
main mysterious, such asimportantly, which seems
to have a relatively unremarkable distribution.



Raw KL:
untrimmed
bated
foggiest
dockyard
beholder
idealization
foregone
undershirt
caboodle
totem
predetermined
ineffectual
sharpshooter
lucre
bulging

PPMI KL:
bated
foggiest
caboodle
dockyard
untrimmed
beholder
idealization
foregone
beeline
lucre
umbrage
undershirt
fruition
totem
sharpshooter

Pos. t-Test KL:
foggiest
beholder
foregone
untrimmed
beeline
lucre
idealization
umbrage
fruition
undershirt
totem
sharpshooter
gamut
overseer
predetermined

Raw Entropy:
bated
foregone
foggiest
beholder
caboodle
beeline
dockyard
untrimmed
umbrage
fruition
totem
idealization
gamut
lucre
undershirt

Raw Cos D.:
untrimmed
foggiest
bated
dockyard
beholder
undershirt
foregone
totem
fruition
caboodle
idealization
gamut
bulging
sharpshooter
predetermined

Growth Rate (P):
close
foregone
foggiest
damage
beholder
range
bated
fruition
observer
gamut
obscure
havoc
beeline
umbrage
totem

Figure 1: The top 15 restricted nouns and adjectives according to selected metrics. Blue words are highly restricted;
red words are unrestricted but low-frequency words.

3.3 Correlations with Frequency

Despite our efforts to select a metric robust to the ef-
fects of frequency, we still find a very strong corre-
lation between the information-theoretic metrics and
frequency. The raw entropy score is correlated with
log frequency atr=-0.88, and thet-test weighted
KL distinctiveness score is correlated with log fre-
quency atr=-0.91.

In light of these strong correlations, we calculated
another metric of restrictedness by simply taking the
residual entropy score after controlling for log fre-
quency in a linear regression. The results of this
metric as applied to our test words are displayed in
figure 4, in which the residual entropy score makes
a clear distinction between infrequent and restricted
words. The top ten most restricted words in the
whole lexicon, by this metric, are displayed in fig-
ure 5.

foregone 5.3298745
beholder 4.2269781
bated 3.5058180
foggiest 3.0930278
fruition 1.9325606
beeline 1.8184322
gamut 1.3946669
umbrage 1.3131754

totem 0.8455303
close 0.4840371
damage 0.4196358
havoc -0.2222552
untrimmed -0.3404372
range -0.6529436
displeasure -0.7873178

Figure 4: Top 15 restricted nouns and adjectives from the
test list, sorted by residual entropy.

vice∧NN
last∧JJ
universal∧JJ
already∧RB
olive∧JJ
end∧VB
north∧JJ
prime∧JJ

since∧RB
executive∧JJ
square∧JJ
longer∧RB
here∧RB
preliminary∧JJ
no∧RB

Figure 5: The top 15 most restricted words in our lexicon
according the residualized entropy score.

The words selected by the residualized measure
are markedly different from those selected by the
other measures, in that they include several surpris-
ing high frequency adverbs such asalready, since,
andno. These seem at first to be in error, since they
can occur in all sorts of semantic contexts. But upon
examination, in the NYT corpus, the adverbalready
appears almost exclusively modifying the verbto be
rather than other verbs, andsince, when parsed as an
adverb, appears almost exclusively modifying auxil-
iary haverather than verbs in the simple past. As far
as we know, these contextual restrictedness for these
adverbs has not been remarked upon previously. The
adjectivelast appears primarily before time words,
such asweekor year, justifying its high rank in this
listing. No, when parsed as an adverb, is nearly al-
ways in the phraseno longer.

Time words receive generally higher scores in the



residualized measure than otherwise; for instance,
year, which appears almost always in time adver-
bials or after numbers, receives a residualized en-
tropy score of 2.6, which means its restrictedness
score is 2.6 bits higher than what one would expect
from its frequency alone. It is ranked as the 6524th
most restricted word by entropy, but as the 44th most
restricted word by residual entropy. Similar patterns
arise formonth, week, and the seasonspring.

4 Contextual Restrictedness and Animacy

Here, we test the hypothesis that animate nouns are
likely to be less restricted than inanimate nouns in
the range of syntactic contexts in which they occur.

4.1 Data

We use data from the animacy hierarchy annotated
section (Zaenen et al., 2004) of the NXT Switch-
board Corpus (Calhoun et al., 2010). This corpus
annotates noun phrases (NPs) for their position on
an animacy hierachy containing the tagsHUMAN ,
ORG (organizations),ANIMAL , PLACE, TIME, CON-
CRETE (physical objects),NONCONC (abstract enti-
ties), MAC (automata),VEH (vehicles), andMIX . In
reducing these annotations to word–animacy pairs,
we consider the animacy tag of an NP to hold of
its lexical head (an assumption which seems to be
fairly robust), and (for lack of any principled binary
division) we consider the tagsHUMAN , ANIMAL and
MAC to denote animate entities.

4.2 Results

In order to examine possible correlations between
animacy and our metrics of contextual restricted-
ness, we fit a logistic regression model predicting
animacy (animate=1, inanimate=0) given various
metrics. A model with log frequency and residual
entropy score as features gives a significant nega-
tive coefficient to the entropy score frequency, indi-
cating that highly restricted words are less likely to
be animate (p ¡ 0.001). The entropy score feature
does not, however, make the model a better fit than a
model incorporating frequency alone. A model with
frequency alone has precision (P ) = 0.794 and re-
call (R) = 0.605 in predicting the data it was trained
on; whereas a model incorporating entropy score has
P = 0.773 andR = 0.603, a degradation in perfor-
mance.

Models incorporating KL distinctiveness per-
formed better. A model incorporating log frequency
and KL distinctiveness, residualized on log fre-
quency, achievesP = 0.853 andR = 0.603. Fur-
thermore, a model incorporating frequency, KL dis-
tinctiveness,and entropy score (and all interactions
among those two and frequency) achievesP = 0.881
andR = 0.605. In this model, the KL divergence
was further residualized on entropy in order to avoid
multicolinearity, since the two predictors were cor-
related atr = 0.47.

In order to ascertain that these positive results
were not the result of overfitting, we split the data
into a training set (90%) and a test set (10%), and
trained our logistic regression model on the training
set alone. On the training set, we findP = 0.887 and
R = 0.603. On the test set, we findP = 0.844 and
R = 0.653 (as opposed toP = 0.800 andR = 0.645
using only frequency as a feature). Though the val-
ues do fluctuate, the KL distinctiveness and entropy
score together have good predictive value for ani-
macy in unseen data.

The curious aspect of these models is the direction
of their effects. The coefficients of the fitted logistic
regression with frequency, KL, and entropy score as
predictors are displayed below. The featurefreq.l is
log frequency;h.rs is entropy score residualized on
frequency; andkl.rs.rs is KL distinctiveness residu-
alized on frequency and on entropy. Interactions are
indicated with colons.

Coefficients: Est. Std. Error z value Pr(> |z|)
(Intercept) -0.04987 0.196 -0.254 0.7995

freq.l -0.26615 0.032 -8.234 >2e-16 ***
h.rs -2.39103 0.260 -9.182 >2e-16 ***

kl.rs.rs 15.61553 0.508 30.754 >2e-16 ***
freq.l:h.rs 0.32498 0.035 9.205 >2e-16 ***

freq.l:kl.rs.rs -2.35476 0.085 -27.680 >2e-16 ***
h.res:kl.rs.rs -1.79567 0.871 -2.062 0.0392 *

freq.l:h.rs:kl.rs.rs 0.18067 0.126 1.432 0.1522

Table 4: Regression results.

The largest effect size is for KL distinctiveness;
the positiveeffect size indicates that words that are
moredistinctive according to the KL score aremore
likely to be animate. This is the opposite of what
we predicted: that restricted words were less likely
to be animate. The reason for this effect could be
that KL divergence is simply functioning to coun-
teract the other predictors, which are all negative,



indicating that restricted words are less likely to be
animate. The gains from using KL as a predictor are
all in precision, which means that KL is functioning
to cancel out the incorrect predictions of frequency
and entropy score. It seems that unrestricted words
tend to be animate, and words that are highly dis-
tinctive in context also tend to be animate.

4.3 Conclusion and Future directions

We have developed a promising metric for contex-
tual restrictedness—the entropy of the dependecy
distribution controlled for frequency—and shown
that it captures our observations about which words
are restricted, that it is a viable means of seeking
out new restricted words, and that, when combined
with with modified KL distinctiveness, it is predic-
tive of a key lexical semantic property. In so doing,
we have also reintroduced and formalized the notion
of vector-space models based on syntactic depenen-
cies for the measurement of lexical properties, and
produced a corpus optimized for this purpose.

The most obvious continuation of this research
would be the investigation of more potential metrics
for contextual restrictedness. One promising direc-
tion in this line of work would be to develop metrics
sensitive to the often metaphorical or frame-based
nature of contextual restrictedness. For instance,
suppose we observe phrasestrong windand we also
observe the phraseweak wind, without finding other
instances of the wordwind. Then suppose we ob-
servestrong wallandtall wall. We should be able to
infer thatwind is more restricted thanwall, because
wind appears only with adjectives of strength, while
wall appears with adjectives that are more seman-
tically diverse. A measure that is sensitive to these
patterns would be more robust to frequency, in that it
would give different scores to these two hypothetical
words, although they would receive the same score
according to the metrics we have developed. The
distributional similarity betweenweak andstrong
would allow the model to generalize beyond simple
word-by-word co-occurence restrictions to the more
complex restrictions based on metaphor.

Two possible kinds of metrics leap to mind to cap-
ture the semantic dimension of contextual restricted-
ness. A method applying similarity-based smooth-
ing would result in a more restricted profile forwind
thanwall above, as measured the metrics we devel-

oped. Another kind of metric could locate each con-
text word in distributional space and find the neigh-
borhood density of the contexts of a word, perhaps
using average pairwise distance. By taking seman-
tics into account, these kinds of measures would
yield more meaningful results than the current study.

It may also be worthwhile to investigate other pos-
sible lexical semantic correlates with restrictedness.
For instance, the imageability of words—a subjec-
tive property shown McDonald and Shillcock show
to be orthogonal CD—might correlate with contex-
tual restrictedness. Contextual restrictedness will
also be useful for comparing languages, and for dis-
covering lists of words requiring special attention for
foreign language learners.

Language modeling offers a promising applica-
tion domain for dependency-based measures of con-
textual restrictedness. Popel and Mareček (2010) in-
troduce and evaluate a novel class of language model
based on syntactic dependencies, and show it to be
extremely promising for domains where it can be re-
alistically implemented. Their model conditions the
probability of a word on its parent (and optionally,
grandparent), the direction it looks towards that par-
ent, and on any words that intervene between them.
They linearly smooth all of the models they test, and
find that the dependency language model provides
much lower test set perplexities than do conventional
models, with the most elaborate dependency model
achieving a remarkable average of 65% of the per-
plexity of a standard trigram model (for which lower
is better) across seven languages.

Though this approach has not yet been evaluated
in an applied setting in any published literature, it
is quite promising. Should it come in to use, it
would provide opportunities for extensions based
on dependency information, including, perhaps, a
dependency-based adaptation of Modified Kneser-
Ney smoothing (Chen and Goodman, 1999), a lan-
guage model smoothing technique that already at-
tempts to capture some information about the con-
textual restrictedness of words.

Appendix: Test words

Restricted nouns and adjectives: bated, foggiest, foregone,

beeline, beholder, caboodle, fruition, gamut, havoc, lucre,

totem, umbrage



High-freq controls: restrained, obscure, predetermined, line,

observer, bundle, success, range, damage, money, displeasure

Low-freq controls: bulging, untrimmed, ineffectual, sharp-

shooter, overseer, dockyard, mayhem, undershirt

Restricted verbs and adverbs: wreak, wreaks, wreaking,

amok, roughshod, haywire

High-freq controls: cause, causing, crazily, harshly, run, ran,

walk, sing, scream, do, does, understand, gasp, toss

Low-freq controls: tosses, masquerade, pollute, legalizing

Acknowledgments

We owe thanks to Aaron Kalb for some useful ideas,
and to Chris Potts and Bill MacCartney for a highly
stimulating class!

References

R.H. Baayen. 2001.Word frequency distributions, vol-
ume 1. Springer.

R.H. Baayen. 2010. Demythologizing the word fre-
quency effect: A discriminative learning perspective.
The Mental Lexicon, 5(3):436–461.

S. Calhoun, J. Carletta, J.M. Brenier, N. Mayo, D. Ju-
rafsky, M. Steedman, and D. Beaver. 2010. The
nxt-format switchboard corpus: A rich resource for
investigating the syntax, semantics, pragmatics and
prosody of dialogue.Language resources and eval-
uation, 44(4):387–419.

S.F. Chen and J. Goodman. 1999. An empirical study of
smoothing techniques for language modeling.Com-
puter Speech & Language, 13(4):359–393.

J.R. Curran and M. Moens. 2002. Improvements in auto-
matic thesaurus extraction. InProceedings of the ACL-
02 workshop on Unsupervised lexical acquisition-
Volume 9, pages 59–66. Association for Computa-
tional Linguistics.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
LREC 2006.

K. Erk, S. Padó, and U. Padó. 2010. A flexible, corpus-
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