
MODELING NATURAL LANGUAGE SEMANTICS

IN LEARNED REPRESENTATIONS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF LINGUISTICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Samuel Ryan Bowman

July 2016

This dissertation is online at: http://purl.stanford.edu/jn251nm7259

© 2016 by Samuel Ryan Bowman. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

ii

http://purl.stanford.edu/jn251nm7259

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Potts, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Thomas Icard, III

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Percy Liang

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

The last few years have seen many striking successes from artificial neural network

models on hard natural language processing tasks. These models replace complex

hand-engineered systems for extracting and representing the meanings of sentences

with learned functions that construct and use their own internal vector-based repre-

sentations. Though these learned representations are e↵ective in many domains, they

aren’t interpretable in familiar terms and their ability to capture the full range of

meanings expressible in language is not yet well understood.

In this dissertation, I argue that neural network models are capable of learning to

represent and reason with the meanings of sentences to a substantial extent. First,

I use entailment experiments over artificial languages to show that existing models

can learn to reason logically over clean language-like data. I then present a large

new corpus of entailments in English and use experiments on that corpus to show

that these abilities extend to natural language as well. Finally, I introduce a new

model that uses the semantic principle of compositionality to more e�ciently and

more e↵ectively learn language from large volumes of data.

iv

Acknowledgments

It was a great privilege to work closely with both Chris Manning and Chris Potts

as advisors. I aspire to be even half as kind, reflective, and e↵ective in my work

as they’ve been, and I aspire to be even half as bold as they’ve encouraged me to

be. I couldn’t have asked for a better committee, either: Without Percy Liang’s

research as an example, I would have found it hard to believe that work on machine

learning for broad-domain natural language understanding could pay o↵. Without

Thomas Icard’s advice, I would have had a much harder time forming some of the

basic questions of this dissertation, and an even harder time addressing them.

I’m also grateful to Chris Manning, Dan Jurafsky, and Percy Liang for organizing

the Stanford NLP Group, and to all of my colleagues in that group. It was my

main academic community for most of my time at Stanford, and it was a lively,

collaborative, and generally well-functioning setting in which to work.

I spent the summers during my PhD interning at Google, and much of my edu-

cation in machine learning took place there. I’m grateful to Yuli Gao for taking a

chance on me as a novice NLP researcher my first year, I’m grateful to Georg Heigold

for taking a chance on me as a novice neural networks researcher my second year,

I’m grateful to Bill MacCartney for being a supportive mentor during my foray into

semantic parsing my third year and for doing the work on applied natural logic that

laid the foundation for much of this dissertation, and I’m grateful to Oriol Vinyals

for helping me get my bearings in modern deep learning my third year and for invit-

ing me to come back to continue doing so my fourth year. In addition, I’m grateful

to Samy Bengio for being a reliable and patient source of both humor and machine

learning advice during all four years, and to Jakob Uszkoreit and Mattheiu Devin for

v

going beyond the call of duty in a variety of ways to help me succeed there.

I would have had a lot less fun and been a lot less productive without my many

coauthors: Harshit Chopra, Ben Lokshin, Marie de Marne↵e, Miram Connor, Natalia

Silveira, Tim Dozat, John Bauer, Gabor Angeli, Jon Gauthier, Abhinav Rastogi,

Raghav Gupta, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy

Bengio. I’m also happy to have gotten to work with Kai Sheng Tai, Neha Nayak,

Kelvin Guu, and Je↵rey Pennington, even though our projects together never made

it to print.

Beth Levin managed a fantastic graduate program and, with help from Dan Juraf-

sky, guided me through the many trials of the academic job hunt. Paul Kiparsky and

Arto Anttila were excellent mentors during my stint as an aspiring phonologist, and I

would have happily continued working with them had Richard Socher and Chris Potts

not compelled me away with exciting results and even more exciting opportunities in

the line of research that led to this dissertation. Everyone in the department o�ce

deserves credit for making sure that what sleep I lost was lost over academic problems

and not administrative ones. Jason Riggle, Karen Livescu, and John Goldsmith at

the University of Chicago first sparked and nurtured my interest in computational

linguistics, and for that, I owe them a great deal.

Nothing that I’ve done in my last year at Stanford would be possible without the

creativity and wit of the many Mechanical Turk workers—many anonymous—who

participated in the creation of SNLI (Chapter 5).

The Donna Schweers and Thomas Geiser Stanford Interdisciplinary Graduate Fel-

lowship kept me fed and sent me to conferences while I conducted much of the research

presented in this dissertation.

Thank you dear reader for venturing this far into the acknowledgments. If your

fortitude carries you through the rest of this dissertation, I hope you find that it was

worth your time.

Personal support Graduate school would have been quite a lot more stressful

without the many people at Stanford and Google who kept me sane with kibitzing

over lunch, co↵ee, beer, or climbing: especially James, Janneke, Dasha, Ed, Roey,

vi

Lelia, Prerna, Bonnie, and Tim at Stanford, and my Google intern comrades Karl,

Te, Yonatan, Nal, Luke, Arvind, Ali, Laurent, and Shane.

Without Pinhole Co↵ee and Caltrain, I would have gotten far less reading done,

and I’m grateful to everyone who kept both running.

I’m grateful that Sam, Max, and Elly stayed close to me through graduate school

despite my increasing inability to think or talk about anything other than research,

and that my family for put up with me even though they didn’t have much of a choice.

I’m also grateful to my almost-family in Japan for sending encouragement from afar.

Saving the best for last: Thanks for everything, Dilini.

vii

For E.F., in memoriam.

viii

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Defining sentence meaning . 4

1.1.1 The truth-conditional view of meaning 5

1.1.2 The relational view of meaning 7

1.1.3 Choosing the relational view 8

1.1.4 Pragmatics and sentence understanding 9

1.1.5 The role of representations in semantic theory 10

1.2 Computational semantics: Building systems 11

1.2.1 Truth-conditional semantics 12

1.2.2 Natural logic . 12

1.2.3 Distributed representations . 12

1.3 This dissertation . 16

2 Background and technical foundations 19

2.1 Natural language inference and natural logic 19

2.1.1 Projectivity . 21

2.1.2 Soundness and NLI . 21

2.1.3 Data for natural language inference 22

2.2 Artificial neural networks . 26

2.2.1 Word embeddings in neural networks 28

ix

2.3 Neural networks for sentence encoding 29

2.3.1 Recurrent neural networks . 31

2.3.2 Tree-structured neural networks 33

2.3.3 A note on learning . 35

2.3.4 From sentence encoding to inference 36

2.3.5 Other approaches to sentence encoding 37

2.4 Additional prior work . 38

2.4.1 Reasoning in distributed representations 38

2.4.2 Analyzing learned representations for language 40

3 Logical reasoning in tree-structured models 43

3.1 Introduction . 43

3.2 Methods . 45

3.3 Reasoning about lexical relations . 47

3.3.1 Learning to represent and infer natural logic relations 47

3.3.2 Reasoning about lexical relations in WordNet 51

3.3.3 Discussion . 53

3.4 Reasoning over recursive structure . 54

3.4.1 Experiments . 54

3.4.2 Results . 56

3.5 Reasoning with quantifiers and negation 58

3.5.1 Experiments . 58

3.5.2 Results . 59

3.6 Discussion and conclusion . 60

4 Logical reasoning in sequence models 61

4.1 Introduction . 61

4.2 Recursive structure in artificial data 63

4.3 Testing sentence models on entailment 65

4.4 Results and discussion . 67

4.5 Conclusion . 70

x

5 A new corpus for NLI 71

5.1 Introduction . 71

5.1.1 Why not some other task? . 72

5.1.2 Corpora in semantics . 74

5.2 Training neural networks with existing data 75

5.2.1 Results . 77

5.3 A new corpus for NLI . 78

5.3.1 Formulating a task definition 78

5.3.2 Data collection . 80

5.3.3 Data validation . 83

5.3.4 The distributed corpus . 87

5.4 Understanding SNLI . 88

5.4.1 Common patterns and possible shortcuts 88

5.4.2 SNLI and natural logic . 91

5.5 Conclusion . 94

6 Modeling natural language inference 95

6.1 Introduction . 95

6.2 Establishing baselines for SNLI . 96

6.2.1 Excitement Open Platform models 96

6.2.2 The lexicalized classifier . 98

6.2.3 Sentence-encoding models . 99

6.2.4 Analysis and discussion . 101

6.3 Transfer learning with SICK . 104

6.4 Discussion . 106

6.4.1 Subsequent work . 106

7 A fast unified parser-interpreter 110

7.1 Introduction . 110

7.2 Related work . 113

7.3 The new model: SPINN . 113

7.3.1 Background: Shift-reduce parsing 113

xi

7.3.2 Composition and representation 114

7.3.3 The tracking LSTM . 116

7.3.4 Parsing: Predicting transitions 117

7.3.5 Implementation issues . 118

7.3.6 TreeRNN equivalence . 120

7.3.7 Inference speed . 120

7.4 NLI Experiments . 122

7.4.1 Models evaluated . 123

7.4.2 Results . 124

7.4.3 Testing on FraCaS . 127

7.4.4 Analysis and discussion . 130

7.5 Conclusion and future work . 134

8 Conclusion 137

8.1 The contributions of this dissertation 137

8.2 Future work . 139

8.2.1 Symbolic reasoning and sentence encoding 139

8.2.2 Data for natural language inference 140

8.2.3 Using tree structure in sentence encoding 140

8.2.4 The future of learned models for sentence meaning 141

xii

List of Tables

2.1 The seven natural logic relations of MacCartney & Manning (2009) . 21

2.2 Comparison of NLI corpora . 23

2.3 Examples from FraCaS . 24

2.4 Examples of training data from RTE-3 25

2.5 Examples of training data from SICK 25

2.6 Examples of Denotation Graph data 26

3.1 The join table . 48

3.2 Sample lexical relations . 50

3.3 Results on lexical relation data . 50

3.4 Sample WordNet lexical relations . 52

3.5 Results on WordNet data . 53

3.6 Specification of the propositional logic 55

3.7 Example statements of the propositional logic 55

3.8 Results on quantifier data . 59

4.1 Example statements of the propositional logic 63

5.1 Examples of SNLI data . 72

5.2 Examples of SICK error analysis labels 76

5.3 Results on SICK . 77

5.4 Statistics for raw sentence pairs . 83

5.5 Statistics for validated sentence pairs 86

6.1 Results with EOP models . 97

xiii

6.2 Results with log-linear classifier models 99

6.3 Results with neural network models 101

6.4 Transfer learning results on SICK . 105

7.1 The operation of the thin-stack algorithm 118

7.2 Tuned hyperparameter values . 124

7.3 Results on SNLI with SPINN . 125

7.4 Results on FraCas . 129

7.5 Results on SNLI examples requiring commonsense knowledge 132

7.6 Results on SNLI examples requiring lexical relation knowledge 132

7.7 Results on SNLI by premise length 133

7.8 Results on SNLI by root tags . 133

7.9 Results on SNLI examples with negation 134

7.10 Results on SNLI examples with pure insertion or deletion 134

xiv

List of Figures

1.1 Word embeddings as points in Cartesian space 13

1.2 Word and sentence encodings as points in Cartesian space 15

2.1 A simple feedforward neural network 27

2.2 Examples of sentence models . 29

2.3 The sentence pair model architecture 37

3.1 The tree-pair model architecture . 45

3.2 Sample boolean structure . 49

3.3 Results on recursive structure . 57

4.1 The sentence pair model architecture 66

4.2 Results on increasingly complex training regimes 68

4.3 Learning curve for the 6 experiment 69

5.1 The instructions used on Mechanical Turk for data collection 81

5.2 Two examples of images included in the Flickr30K corpus 82

5.3 The distribution of sentence length 84

5.4 The instructions used on Mechanical Turk for data validation 85

6.1 Neural network model structure . 100

6.2 Learning curve for SNLI test . 102

7.1 Sentence encoders and batching . 111

7.2 Two views of SPINN . 112

7.3 Model speed comparison . 121

xv

7.4 Learning curves . 126

7.5 Examples from FraCas . 128

xvi

Chapter 1

Introduction

This dissertation introduces natural language inference as a task for the development

and evaluation of neural network techniques for sentence understanding in natural

language processing, and uses that task both to advance our understanding of existing

models and as a problem on which to develop new models.

Neural network models have recently become the most e↵ective tools for a range

of hard applied natural language processing problems, including translation (Luong

et al. 2015b), sentiment analysis (Socher et al. 2011b), and text generation (Wen

et al. 2015). These models succeed in large part because they can learn and use their

own continuous numeric representational systems for sentence meaning. However,

their representations need not correspond in any interpretable way with the logic-

based representations typically used in linguistic semantics. These models’ successes

in learning to solve semantically di�cult problems signal that they are a potentially

valuable object of study for semantics, and drawing insights from semantics to improve

these models could yield substantial progress across applied language understanding

tasks. This dissertation pursues these goals.

In order to study the ability of neural network models to develop good seman-

tic representations, it is first necessary to choose a concrete task that instantiates

that ability. I argue that the task of natural language inference—also called

recognizing textual entailment—is ideal for this purpose. In this setting, a

machine learning system is adequate if it can learn representations for sentences that

1

CHAPTER 1. INTRODUCTION 2

allow it to judge whether any given sentence contradicts or logically follows from any

other given sentence. In a typical instance, a model would be asked to label the

pair (1.1) as an entailment, rather than as a contradiction or a logically independent

example.

(1.1) Premise: a young man without protective gear is on a bike jumping over

piles of sand

Hypothesis: a cyclist with no helmet is navigating obstacles with his

bicycle

Since the task is framed as a simple decision problem over sentence pairs, it

fits easily with standard machine learning methods. However, a model can only

fully succeed on this task if it grapples with the full complexity of compositional

semantics, including quantification, coreference, pragmatic inference, and many other

phenomena. My experimental work on neural networks is centered on this task.

There are three excellent reasons to pursue the development of high-quality neural

network models for language understanding:

• Improving upon models that already constitute the state of the art in natural

language processing is a straightforward way to produce practical technological

advances.

• Neural networks represent a uniquely clear instance of a näıve model class that

incorporates little prior knowledge of grammar but that can nonetheless learn to

use and understand language e↵ectively in some settings. Better understanding

what makes this possible can tell us a great deal about how language is learned

and represented in humans.

• Attempting to build and understand models that can use language in a general

sense will force us—productively—to integrate the symbolic theories of language

understanding that best capture logical reasoning and complex compositional-

ity with distributional approaches that best capture similarity, analogy, and

heuristic inference.

This dissertation makes the following concrete contributions:

CHAPTER 1. INTRODUCTION 3

• In this chapter and throughout the dissertation, I introduce and motivate the

use of natural language inference experiments as a highly e↵ective means of

evaluating representation learning systems for natural language understanding.

• In Chapter 3, I use experiments on artificial data and heavily structured nat-

ural language data to show that existing tree-structured neural networks can

e�ciently learn to handle key building blocks of natural language inference—

memorizing and deriving lexical entailments, learning to represent recursive

functions, and modeling the ways that semantic composition impacts entail-

ment—without the need for special architectures or training procedures.

• In Chapter 4, I use additional experiments on artificial data to show that

sequence-based recurrent neural networks—the most widely used style of neural

network architecture for sentence understanding—are substantially less e↵ective

than tree-structured models at learning these same behaviors.

• In Chapter 5, I demonstrate the need for a large human-annotated dataset for

NLI, and go on to present SNLI, the largest such dataset by almost two orders

of magnitude.

• In Chapter 6, I demonstrate that SNLI makes it newly possible for neural net-

work models to match the performance of conventional symbolic models on

NLI.

• in Chapter 7, I use SNLI as a testing ground to develop SPINN, a new neu-

ral network architecture for sentence understanding, which incorporates the

strengths of both tree-structured and recurrent models and yields a new state

of the art.

This chapter lays out the key issues and motivations of this dissertation. Sec-

tion 1.1 discusses the challenges of setting criteria for success in work on sentence

meaning and presents the primary formal approaches to sentence understanding.

Section 1.2 then discusses how sentence meaning is treated in applied work on com-

putational semantics. Finally, Section 1.3 lays out the structure of the rest of this

dissertation in more detail.

CHAPTER 1. INTRODUCTION 4

1.1 Defining sentence meaning

This dissertation studies neural networks as a means of extracting representations of

meaning from the texts of sentences. In order to measure their ability to do this,

it is necessary to have a clear picture of what success looks like: in this case, what

constitutes an e↵ective representation of sentence meaning. In this section, I briefly

discuss the issue of what constitutes sentence meaning under two di↵erent views of

semantics and go on to motivate my use of a relational view of meaning. In this

discussion, I focus primarily on literal meaning, before going on to briefly introduce

issues of pragmatic enrichment.

There is currently no single approach to the representation of meaning that is

suitable for all purposes. The question of what constitutes meaning is largely a

question of definition. What’s worse, it is a question of definition that is shared across

a diverse set of research communities spanning philosophy, psychology, linguistics, and

computer science, each with its own goals, making the question nearly impossible to

answer decisively.

In light of this, I attempt to make my pursuit of meaning in this dissertation more

precise by following the advice of Lewis (1970):

In order to say what a meaning is, we may first ask what a meaning does,

and then find something that does that.

To study meaning, then, I pick out some of the things that meanings do and stipulate

that any system for representing sentence meaning that can reproduce those behaviors

has an adequate command of sentence meaning. This section introduces two broad

families of views about sentence meaning which di↵er in what activities they would

have meanings do. The truth-conditional view, which is most prominent in

formal semantics within linguistics, defines the meaning of a sentence primarily as the

subset of possible situations in which that sentence is true. The relational view,

which I focus on in this dissertation, defines the meaning of a sentence primarily as

the set of logical relationships that it enters into with all other possible sentences.

The two views each present ways of thinking of the same semantic phenomena, but

CHAPTER 1. INTRODUCTION 5

they lead to very di↵erent conclusions about how to conduct the research goals that

I pursue in this dissertation.

1.1.1 The truth-conditional view of meaning

The mainstream approach to formal semantics represents the meaning of a sentence

primarily through its truth conditions (Lewis 1970, Montague 1973, Heim & Kratzer

1998, i.a.). Under this approach, the meaning of a sentence can be seen as a function

that can be applied to some representation of a situation (i.e. the state of the world,

the time, the identity of the speaker, etc.) to determine whether the sentence is true

in that situation. The primary goal of semantic theory in this view is the production

of an e↵ective formal system that can predict and describe the truth conditions of

novel sentences. This goal is typically pursued using two key tools:

• Model theory: Model theory formalizes the means by which a sentence mean-

ing can be checked against a situation and verified by introducing the notion of

rich set-theoretic models of the world.

• Logical forms: The functional representations of meanings in this approach

are generally logical forms. These are expressions that can be evaluated

alongside a model (and possibly additional contextual information) to yield a

truth value (T, F). Logical forms are generally expressed using modal logic or a

similar logic and assembled from constituent parts at interpretation time.

As an example of what a meaning looks like in this tradition, Montague (1973)

transcribes one possible reading of the sentence (1.2) as (1.3). I use slightly updated

notation.

(1.2) A woman loves every man.

(1.3) 8x[man0(x) ! 9y[woman0(y) ^ love0(y, x)]]

A model, in this case, would correspond to an assignment of members to the sets

man0, woman0, and love0. If the model makes this assignment in such a way that the

logical condition above is satisfied, then the sentence is true.

CHAPTER 1. INTRODUCTION 6

This approach to meaning captures the reasonable intuition that, if one knows

the meaning of a sentence, then one knows what the world would have to be like for

the sentence to be true. The particular choice of logical forms and model theory is a

straightforward way to formalize a semantics that takes this view, but it is not the

only possible way. There are many possible ways of formally representing the state of

the world, and many possible ways of expressing functions over those representations,

and no fundamental obstacles prevent neural network models from filling these roles

in the construction of a truth-conditional semantics.

Interpretation in truth-conditional semantics

In the standard formal approach to truth-conditional semantics, the meaning (logical

form) for a sentence is constructed from the sentence itself incrementally following

the principle of compositionality. The principle, attributed to Gottlob Frege

though never stated explicitly in his work, is summarized as follows by Partee (1984).

The meaning of an expression is a function of the meanings of its parts

and the way they are syntactically combined.

The parts in this statement are the smallest meaningful units of language: words

with no decomposable parts (e.g. dog, France), morphemes (meaningful word parts,

e.g. un-, a↵ord, -able), and multi-word idioms (e.g. kick the bucket).

The process of interpretation in this view of language understanding is generally

broken into three components: lexical semantics, compositional semantics, and prag-

matics. Lexical semantics characterizes the meanings of the smallest meaningful units

of language. Compositional semantics describes the formal procedures by which these

minimal units are assembled together into sentence meanings, yielding logical forms

like (1.3) above. Pragmatics describes the systematic reasoning processes by which

listeners infer aspects of sentence meaning that aren’t supported by the literal content

of a sentence.

Much of the work that goes into specifying a full truth-conditional semantics

involves constructing complex functional forms for words (and other basic units)

within the lexical semantics such that those words can combine with other words in a

CHAPTER 1. INTRODUCTION 7

way that yields correct sentence meanings. The word everyone, for example, might be

represented by a function over predicates which selects those predicates that are true

in any case where their argument is a person. Using a simplified lambda notation,

that could be expressed as in (1.4).

(1.4) JeveryoneK = �P.8x.person0(x) ! P (x)

This task is quite challenging, since it is necessary to assign meanings to linguistic

forms such that each meaning makes the precisely correct contribution to the meaning

of every possible sentence it could be used in, without adding extraneous information,

leaving out necessary information, or creating a type mismatch that would prevent

the resulting sentence meaning from being checked against a model. A complete

truth-conditional semantics has not yet been completed for any language.

1.1.2 The relational view of meaning

In this dissertation, I focus on an alternative framing of sentence meaning that se-

lects inferential relationships, rather than truth conditions, as the primary element of

meaning. In this view, rather than evaluating the truth of a sentence–situation pair,

the semantics evaluates the relation holding between a sentence–sentence pair.

This framing is based in the inferentialist or proof-theoretic (in the sense

of Hallnäs & Schroeder-Heister 1990) approach to formal semantics, which follows

a substantial tradition in logic (Prawitz 1965, Dummett 1991, Francez et al. 2010).

In natural language semantics, this tradition is instantiated most clearly in work on

natural logic (Sánchez-Valencia 1991, van Benthem 2008, MacCartney & Man-

ning 2009, Icard III 2012, Icard III & Moss 2013b), the formal characterization of a

sound subset of intuitive human reasoning. Contemporary natural logic presents a

rich formal system that is capable of determining, for example, that the relationship

between (1.5) and (1.6) is that of entailment—that is, whenever the first is true,

the second must also be true—rather than contradiction or some other relation.

(1.5) Jimmy Dean refused to move without blue jeans.

(1.6) James Dean didn’t dance without pants.

CHAPTER 1. INTRODUCTION 8

This framing surfaces in natural language processing as the task of natural lan-

guage inference (NLI; MacCartney 2009) or recognizing textual entail-

ment (RTE; Dagan et al. 2006), in which computational models are evaluated on

their ability to judge the relationships between pairs of novel sentences. While NLI is

relatively immature as a research area within applied NLP, it has been used both as a

proving ground for novel approaches to computational semantics and as a component

in the design of larger NLP systems.

Natural logics use relatively simple representations for sentence meaning: they

perform inference over the raw texts of sentences augmented with their parse trees.

Using these surface forms as representations of meaning complicates the operation of

the logic, but removes the need for a more sophisticated interpretation mechanism

like those typical of truth-conditional semantics.

While natural logics operate over surface form, the choice of a relational view of

meaning in general does not force one to choose this kind of superficial representa-

tional system. Neural network models for relational semantics like those presented in

this dissertation cannot operate directly on text. Instead, they incorporate a com-

ponent that translates sentences into distributed representations, as discussed

below.

1.1.3 Choosing the relational view

Relational semantics and truth-conditional semantics both must account for many

of the same natural language phenomena, including lexical and syntactic ambiguity,

coreference, quantification, and many others. However, the two approaches highlight

di↵erent aspects of language understanding, and a formal system that is adequate for

one may not be adequate for the other. Even if a relational system can successfully

recognize valid inferences, it may not necessarily have explicit access to any kind of

world model that would allow it to evaluate the truth of a single statement. On the

other hand, even if a truth-conditional system can successfully judge the truth of

novel sentences in novel situations, it may not necessarily use representations that

allow it to reason about inferences, at least not without the prohibitively expensive

CHAPTER 1. INTRODUCTION 9

operation of enumerating all possible situations and models.

In this dissertation, I pursue the relational view. I build and evaluate neural

network models for natural language inference as a means of evaluating their ability

to interpret sentence meaning. This is because the relational view makes it possible

to precisely implement semantic interpretation without the need for a model or any

other explicit representation of situations in the outside world. A system for NLI

thus needs to be able to handle only one type of input—the sentence—rather than

both sentences and situations as in the truth-conditional view. This use of a single

data type makes the interpretation of experimental results fairly straightforward. If a

model succeeds at performing inference, it thereby demonstrates that it can e↵ectively

represent sentence meaning. If a model fails to perform inference, it has few other

possible points of failure, suggesting that it lacks an e↵ective representational system

for sentence meaning.

While the neural network models that I build do not draw directly on techniques

from natural logic, I do use it as a point of reference. In Chapters 3 and 4, test-

ing models on their ability to reproduce the behavior of natural logic on aspects of

reasoning that natural logic captures well.

1.1.4 Pragmatics and sentence understanding

Pragmatic inference is the process by which language users systematically apply infor-

mation about social convention and conversational context to infer aspects of speaker

intention that are not reflected in literal sentence meaning. Pragmatic reasoning is

responsible, for example, for the inference that S2 below does not know where in

Europe Bob is.

(1.7) a. S1: What country is Bob in right now?

b. S2: Bob is somewhere in Europe.

Pragmatic inference plays a substantial role in almost any instance of human language

understanding, and it is relevant to any reasonable view of sentence meaning. In the

context of applied natural language inference, it has been studied in work like that

CHAPTER 1. INTRODUCTION 10

of de Marne↵e et al. (2012), but it is not a major focus of current research. It is not

highlighted in any of the evaluation tasks that I use in this dissertation, and I choose

leave it as a background issue in much of what follows.

1.1.5 The role of representations in semantic theory

Semantics is, in large part, the study of the correspondence between linguistic form

and meaning. Even though much of the body of semantic theory is presented from

a formal and truth-conditional perspective, any empirically sound result about that

correspondence is a contribution to semantics, no matter what representation or fram-

ing it is expressed under. In this section, I argue that both results about inferences

and supervised learning results can inform semantic theory.

Inference results are semantic results

Claims about what inferences a sentence does or does not support are also claims

about the truth conditions of that sentence. If some sentence A entails another

sentence B, then the truth conditions of sentence A must be strictly less restrictive

than the truth conditions of B: any situation that validates A must validate B. If A

contradicts B, then their truth conditions must be disjoint: no possible situation can

satisfy both.

Conversely, claims about the truth conditions of sentences are also claims about

entailments. If the truth conditions for two sentences are such that the situations that

validate A are a subset of those that validate B, than A entails B. Similar rules justify

predictions of contradiction and other semantic relations. Although much of semantic

theory is built in truth-conditional terms, it is often straightforward to recast existing

claims in terms of inference. For example, attempts to specify the behavior of generics

like dogs in (1.8) can be framed as attempts to predict the circumstances under which

generic sentences entail related sentences like the simplified examples shown in (1.9).

(1.8) Dogs bark.

CHAPTER 1. INTRODUCTION 11

(1.9) a. All dogs bark.

b. 51% of dogs bark.

c. The stereotypical dog barks.

Similarly, attempts to predict the behavior of factive verbs like forget can be

framed as questions of the entailments of full sentences, for example whether (1.10)

or its negation (1.11) entails the simpler form (1.12).

(1.10) John forgot to eat breakfast.

(1.11) John did not forget to eat breakfast.

(1.12) John ate breakfast.

Machine learning results are semantic results

Much of linguistic theory takes the form of claims about what aspects of language are

universal, and there is a long history of debate about the extent to which discovered

universal properties reflect specific innate properties of human cognition. Machine

learning results can provide evidence on this point: any aspect of language that a low-

bias machine learning system (one that has no specific prior knowledge of language)

can learn to reproduce from a type and amount of data that human children also

have access to is an aspect of language that need not be innate. In practice, evidence

of this kind is only indirect, since large-scale machine learning experiments like the

ones in this dissertation never come especially close to reproducing the conditions of

human language learning. However, this evidence can still be informative, especially

in settings where it is possible to argue that the machine learning system is learning

in strictly less advantageous circumstances, or from strictly less data, than the human

learner.

1.2 Computational semantics: Building systems

In this section, I briefly outline the approaches to sentence meaning that are seen most

often in applied computational semantics research within NLP. I focus particularly on

CHAPTER 1. INTRODUCTION 12

distributed representations, which I use in this dissertation, and which do not have a

close parallel with any approach used in formal semantics.

1.2.1 Truth-conditional semantics

Logical form-based representations of meaning, and their corresponding interpretation

strategies, have been under study in computational settings for years (Blackburn &

Bos 2005, Van Eijck & Unger 2010, i.a.). The most application-oriented line of work

to emerge from this is that of semantic parsing for question answering (Woods et al.

1972, Zettlemoyer & Collins 2005, Liang et al. 2013), in which questions are translated

to logical forms that can be checked against a knowledge base (which is e↵ectively a

simple world model) to yield answers. Systems based on logical forms are a natural

fit for this kind of question answering, and are the best available systems for the task,

but their performance is still far from perfect except on heavily constrained task

domains due to the need for rich lexical representations that are di�cult to acquire

without expensive expert annotation.

1.2.2 Natural logic

The task of NLI has been studied relatively thoroughly within NLP and a range

of methods for it have been proposed, usually applying machine learning to some

combination of simple matching features and the outputs of local symbolic inferences.

However, the history of formal approaches to applied NLI like natural logic is relatively

brief. MacCartney (2009) finds that a direct implementation of natural logic using

existing resources is relatively weak, failing to outperform simpler baselines on its

own. MacCartney (2009) and Watanabe et al. (2012) both show that hybrid systems

that also incorporate machine learning components can perform somewhat better.

1.2.3 Distributed representations

Artificial neural networks are built around distributed representations. Distributed

representations for natural language (sometimes also called embeddings) encode the

CHAPTER 1. INTRODUCTION 13

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

• good

• bad

• okay

• food

• service

First Dimension

S
ec
on

d
D
im

en
si
on

Figure 1.1: An example 2D Cartesian embedding space with the embeddings for a
few words.

meaning of a piece of text not symbolically, but rather as a dense real-valued vector

in a space of tens, hundreds, or thousands of dimensions. No individual dimension of

this vector space is meant to encode any specific semantic feature, but all semantic

information is instead distributed throughout the dimensions, in a rough analogy

to the way information is represented in the brain. Generally, all possible natural

language expressions will be represented as vectors of the same dimension in the same

vector space, allowing for arbitrary pairwise comparisons between them. In particular,

proximity in this vector space tends to reflect semantic similarity, and, at least within

local regions, directions in this vector space tend to capture particular aspects of

semantic variation (Mikolov et al. 2013b). This ability to integrate nuanced and

continuously-variable measures of similarity directly into the representational system

is tremendously helpful in enabling models based on distributed representations to

generalize intelligently to unseen phenomena. Figure 1.1 shows an example of words

in a simple two-dimensional embedding space.

Most successful applications of distributed representations to natural language

sentences have relied extensively on machine learning, and for good reason. There is

CHAPTER 1. INTRODUCTION 14

not currently any e↵ective non-learning-based framework that is reliably able to con-

dense sentences into fixed length representations without either sacrificing necessary

information or expanding the size of those representations to an impractical degree. In

contrast, machine learning-based methods, especially those involving artificial neural

networks, have so far proven e↵ective at negotiating this trade-o↵.

Distributed representations for meaning stem from a line of research into mean-

ing representation that is historically aligned more with natural language processing

than with either of the two views of semantics discussed above. As such, their de-

velopment has not been directly motivated by either view of what meanings should

do. Instead, a range of di↵erent practical goals have informed the development of a

corresponding variety of di↵erent systems for distributed representation. However,

there is no fundamental obstacle to using distributed representations within either

truth-conditional or relational semantics, and in this dissertation I model relational

semantics using these representations.

Word vectors and distributional semantics

Much of the research that has been conducted on distributed representations for

text falls within the distributional semantics paradigm. The aim of distributional

semantics is to discover information about the meanings of words (and occasionally

larger structures) using only distributional information, such as the words that a given

word cooccurs with in a sentence, the types of syntactic configurations it appears in, or

the documents it appears in. This often takes the form of algorithms for constructing

distributed1 representations for those objects. Baroni et al. (2014) provide a thorough

history of this literature.

Distributional semantics methods are generally unsupervised learning meth-

ods: they learn to assign vectors to words in a way that allows contextual information

1
Distributed and distributional are distinct terms describing potentially similar objects. Distri-

buted representations are dense numeric representations (vectors or tensors) of information of any
kind. Distributional semantics is the approach to representing the meanings of words or phrases as
collections of statistical information about the distribution of those phrases across documents and
contexts. Distributional semantic representations often take the form of distributed representations
generated by some function applied to a set of cooccurrence statistics.

CHAPTER 1. INTRODUCTION 15

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

• good
• okay

• bad

• food

• service

• good food, bad service

• bad food, good service

First Dimension

S
ec
on

d
D
im

en
si
on

Figure 1.2: An example 2D Cartesian embedding space with some sentence fragment
encodings shown.

of some kind to be recovered from those vectors, rather than learning to specifically

tune those vectors to provide useful semantic signals for any specific applied task.

Nonetheless, much of the extant work on distributional semantics aims to produce

representations that are broadly useful as inputs to task-specific NLP models. They

have largely succeeded at this aim, as distributed representations generated from large

text corpora using methods like SkipGram (Mikolov et al. 2013a), CBOW (ibid), and

GloVe (Pennington et al. 2014) are ubiquitous in modern NLP.

Sentence vectors and sentence encoding

Interpretation in the context of distributed representations is the process of trans-

lating the text of a sentence into a vector representation of that sentence, called a

sentence encoding or sentence embedding. While word representations from

distributional semantics approaches are commonly used as inputs to systems for sen-

tence encoding, distributional statistics alone are not especially e↵ective above the

word level. This is because sentence-encoding systems need to be able to produce

encodings for sentences which have never been uttered before, and for which there

CHAPTER 1. INTRODUCTION 16

are thus no statistics available. Instead, sentence encoding is almost invariably done

using neural network models which are trained to combine the distributed representa-

tions for the words (or word parts) in a sentence into a new distributed representation

for that sentence. Figure 1.2 shows an example of sentence encodings for two short

sentence fragments and the word embeddings that they are built from.

Instead of attempting to predict or reconstruct distributional statistics, these neu-

ral network sentence encoders are generally trained to produce vectors that solve

some specific language understanding task, such as sentiment evaluation, translation,

or paraphrase identification. They are almost invariably trained in a supervised

learning setting, wherein the model is encouraged to match the known correct

output for each input from some human-annotated training corpus.

1.3 This dissertation

Machine learning experiments on natural language inference data constitute the pri-

mary mode of research in this dissertation. My goal is not to describe the properties

of ideal or formally elegant distributed representation models for sentence meaning,

as has been explored in research like that of Coecke et al. (2011), but it is rather to

understand and improve neural network based sentence-encoding models that have

been empirically shown to solve hard problems.

After Chapter 2 introduces the key technical machinery used in this dissertation,

Chapter 3 presents four experiments on artificial data derived from implementations

of natural logic and on heavily structured natural language data. These experiments

establish a basic picture of the learning ability of the tree-structured models that I

study. I find that existing tree-structured neural network models can learn lexica

of word embeddings that support natural language inference, learn to use a com-

positional grammar to interpret novel structures, and learn to encode the complex

functional meanings of quantifiers. These models can, for example, conclude that

all reptiles swim contradicts some turtles do not move. Chapter 4 extends these ex-

periments to show that tree-structured models are substantially more e↵ective than

CHAPTER 1. INTRODUCTION 17

simpler sequence-based models at reasoning over compositional structures, and dis-

cusses the trade-o↵s between the two approaches.

Next, Chapter 5 presents the data necessary to extend these artificial language

results to real English. While there are preexisting public corpora of natural language

inference data available, none of them contains more than a few thousand examples.

Since neural network models make up for their lack of prior knowledge by demanding

vast amounts of training data, they cannot learn well in this context. After present-

ing an experiment that demonstrates the seriousness of this problem, I present the

Stanford Natural Language Inference (SNLI) corpus, which I collected. It consists

of 570,000 sentence pairs constructed and labeled for natural language inference by

human annotators through a crowdsourcing task.

In order to collect labeled sentence pairs in a way that is intuitive and consistent

across individuals, I also develop a novel approach to NLI data collection based around

scene descriptions. In it, workers are given a description of a scene and asked first

to re-describe the events in that scene in a new sentence (yielding an entailment

between the initial description and the newly created one), then to describe the events

of a similar but di↵erent scene (yielding a contradiction), and then to write a third

description that is possibly, but not definitely, true of the original scene (yielding a

semantically independent example). A subsequent validation study shows that the

collected sentence pairs are generally understandable and that their relation labels

can be reliably reproduced by other annotators.

Next, Chapter 6 presents a set experiments that establish performance baselines

for SNLI with a variety of model types. I find that while some neural network models

are competitive with the state of the art in conventional non-neural network NLI

models, neural network models which incorporate explicit syntactic parse information

into their representations—and which have been shown to perform at the state of the

art elsewhere—cannot scale to the size and di�culty of SNLI.

Following this, Chapter 7 introduces SPINN, a novel model architecture for sen-

tence encoding that makes it possible to use syntactic structure in large-scale natural

language learning tasks like SNLI. This architecture integrates the computations of

a tree structured sentence encoding into the structure of a natural language parser,

CHAPTER 1. INTRODUCTION 18

yielding dramatic gains in training and test speed, the ability to operate on unparsed

data, and a new state of the art on sentence encoding for SNLI.

Finally, Chapter 8 concludes and lays out promising directions for future work.

Chapter 2

Background and technical

foundations

This chapter introduces the key technical concepts of this dissertation, and provides

references to relevant prior work. Section 2.1 introduces natural language inference in

more detail and describes the machinery of natural logic. Section 2.2 introduces the

principles of artificial neural networks, and Section 2.3 discusses their use in sentence

encoding. Finally, 2.4 discusses some additional relevant prior work.

2.1 Natural language inference and natural logic

The experiments in this dissertation are built around the task of natural language

inference, in which the goal is to determine the core inferential relationship between

two sentences. The semantic concepts of entailment and contradiction are central to

all aspects of natural language meaning (Katz 1972), from the lexicon to the content

of entire texts. Thus, NLI—characterizing and using these relations in computational

systems—is essential in tasks ranging from information retrieval to semantic parsing

to common-sense reasoning (Fyodorov et al. 2000, Condoravdi et al. 2003, Bos &

Markert 2005, Dagan et al. 2006, MacCartney & Manning 2009).

In recent years, NLI has become an important testing ground for approaches

employing distributed word and phrase representations. Distributed representations

19

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 20

excel at capturing relations based in similarity, and have proven e↵ective at modeling

simple dimensions of meaning like evaluative sentiment (e.g. Socher et al. 2013),

but it is less clear from existing literature that they can be trained to support the

full range of logical and common-sense inferences required for NLI (Weston et al.

2015, 2016, and Chapter 3). In a SemEval 2014 task aimed at evaluating distributed

representations for NLI, the best-performing systems relied heavily on additional

features and reasoning capabilities (Marelli et al. 2014a).

Much of the theoretical work on this task involves natural logic, a family of

formal systems that define rules of inference between natural language words, phrases,

and sentences without the need of intermediate representations in an artificial logical

language. This dissertation uses the natural logic developed by MacCartney & Man-

ning (2009) as a formal point of comparison. This logic defines seven core relations

of synonymy, entailment, contradiction, and mutual consistency, as summarized in

Table 2.1, and it provides rules of semantic combination for projecting these relations

from the lexicon up to complex phrases.

Several applied models also draw methods from natural logic. MacCartney (2009)

himself presents an implementation of his natural logic that specifies a straightfor-

ward pipeline of tools to produce the alignment and lexical relation information that

the core logic requires for any given example. MacCartney finds mixed results with

this implementation, with the model tending to favor precision when identifying en-

tailments and contradictions at the expense of low recall. Watanabe et al. (2012)

improve upon MacCartney’s implementation of the logic by treating some portion of

the alignment and lexical relation information as latent. Angeli & Manning (2014)

use a simple implementation of MacCartney’s logic in a model that is designed to

search e�ciently over a large space of possible premises to judge the truth of a single

target hypothesis.

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 21

Name Symbol Set-theoretic definition Example

entailment x < y x ⇢ y turtle < reptile

reverse entailment x = y x � y reptile = turtle

equivalence x ⌘ y x = y couch ⌘ sofa

alternation x | y x \ y = ; ^ x [y 6= D turtle | warthog
negation x

^
y x \ y = ; ^ x [y = D able

^
unable

cover x` y x \ y 6= ; ^ x [y = D animal ` non-turtle

independence x# y (else) turtle # pet

Table 2.1: The seven natural logic relations of MacCartney & Manning (2009). D
is the universe of possible objects of the same type as those being compared. The
relations are mutually exclusive and the relation # applies whenever none of the other
six do.

2.1.1 Projectivity

Much of the complexity of natural logic is in the piece of the logic responsible for

determining how word–word relations are projected onto corresponding sentence–

sentence relations. Determining, for example, that the relation in (2.1) is reversed

when placed in the sentential context shown in (2.2), and that it becomes the mini-

mally informative # relation when its two sides are placed in the di↵ering contexts

shown in (2.3).

(2.1) cat < animal

(2.2) Stimpy is not a cat = Stimpy is not an animal

(2.3) Stimpy is not a cat # Stimpy is an animal

The machinery responsible for this inference is that of projectivity, an extension

of the monotonicity calculus of earlier work on natural logic (Sánchez-Valencia

1991, van Benthem 2008). I refer the reader to MacCartney (2009) for a full treatment

of this aspect of natural logic.

2.1.2 Soundness and NLI

The formal properties and inferential strength of contemporary natural logic are now

well understood (Icard III & Moss 2013a,b), and it is known to be sound. If it derives

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 22

a relation between two expressions of natural language, then that relation is correct

under standard assumptions about natural language meaning. However, there is no

guarantee that this logic will be able to derive a relation between any two comparable

expressions, and in fact inference in the logic often halts with an output state that

reflects uncertainty between several or even all of the seven possible relations.

This means that if some formal or computational system is to be able to accurately

perform natural language inference across a maximally broad range of natural lan-

guage expressions, that system will have to be able to fully reproduce the inferences

of natural logic, but it will also need the power to make additional inferences as well.

The structure of this dissertation mirrors that observation, first studying the ability

of neural network sentence-encoding models to reproduce the behaviors of natural

logic, then studying their ability to learn to do open domain inference by example.

2.1.3 Data for natural language inference

The quality of a machine learning model depends heavily on the quality and quantity

of the data on which it is trained, and this dependence is especially strong for models

like neural networks that incorporate little prior domain knowledge. As such, build-

ing e↵ective machine learning systems for natural language inference requires access

to large high-quality corpora of example inferences. This dissertation uses artifi-

cially generated corpora, preexisting human-annotated corpora, and a novel human-

annotated corpus.

Artificial language data

One of the aims of this dissertation is to use artificial language learning results to

make claims about the abilities of existing neural network models to learn to represent

particular aspects of natural language meaning. Artificial language data provides two

key advantages that make it ideal for studying representation learning systems like

these. First, it is possible to create datasets from well-understood formal models,

such that the data are guaranteed to be internally consistent and error-free, and such

that the challenges posed by each experiment can be tightly constrained. In addition,

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 23

Corpus Examples NL Validated

FraCaS (Cooper et al. 1996) 346 3 3
RTE 1–5 (Dagan et al. 2006, et seq.) 7K 3 3
SICK (Marelli et al. 2014b) 10K 3 3
SNLI (Bowman et al. 2015a, Ch. 5) 570K 3 3
DenotationGraph (Young et al. 2014) 728K 7 7
Entailment graphs (Levy et al. 2014) 1,500K 7 7
Paraphrase Database 2.0 (Pavlick et al. 2015) 100,000K 7 7

Table 2.2: A comparison of available NLI corpora. Examples indicates the number
of labeled sentence pairs in the corpus. NL indicates whether a corpus contains pairs
of full natural language sentences. Validated indicates whether the labels in a corpus
were assigned or validated by human annotators.

it is possible to scale datasets to arbitrarily large sizes with minimal e↵ort, making it

possible to ensure that learning systems do not fail to model any aspect of a dataset

solely for lack of evidence.

In Chapters 3 and 4 I train neural network models on data from artificial lan-

guages. To generate these datasets, I randomly generate individual expressions from

these languages, and then label pairs of these expressions with a purpose-built Python

implementation of MacCartney’s natural logic.

Natural language data

Training neural network models to do NLI on real natural language requires the use

of annotated corpora. While it is possible to automatically annotate inference data

for simple artificial languages, this luxury is not available for natural language.

Table 2.2 surveys existing NLI corpora and compares them with the Stanford

Natural Language Inference (SNLI) corpus, which is presented in this dissertation.

Of the six existing datasets, three contain full natural language sentence pairs, but

are too small to be e↵ective in training neural networks, and three others are large

enough to be e↵ective, but are not structured as sentence pairs, and were generated

automatically, yielding substantial amounts of biased error in their labels.

FraCaS (Cooper et al. 1996) is the earliest corpus for NLI to be widely available,

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 24

Section 1: Quantifiers

No delegate finished the report. contradiction Some delegate finished the re-
port on time.

Section 2: Plurals

Either Smith, Jones or Anderson
signed the contract.

neutral Jones signed the contract.

Table 2.3: Examples of data from FraCaS.

and was created manually by experts in order to highlight a diverse range of inference

patterns. As such, it is not entirely natural, but it is nonetheless is an excellent

task for revealing the ability of models to do several kinds hard formal inference

e↵ectively. FraCaS contains 346 question and answer pairs which can be converted

into an entailment form using a straightforward method from MacCartney (2009). It

is broken down into sections covering semantic issues like quantification, anaphora,

and propositional attitudes. There are three labels covering most of the data, yes

(forward entailment), no (contradiction), and unk (independence, including reverse

entailment). Table 2.3 shows a couple of examples. The small size makes it e↵ectively

useless as a training set, but its high quality and cleanly defined subsets make it a

useful benchmark for testing, and I use it in this way in Section 7.4.3.

The Recognizing Textual Entailment datasets (RTE; Dagan et al. 2006, et seq.),

produced in a series of competitions, comprise about seven thousand entailment ex-

amples, divided between two- and three-class classification. (Only the later datasets

mark a contrast between contradiction and independence.) These problems are drawn

at least in part from naturally occurring sentences, and tend to be fairly complex and

to rely on a considerable amount of world knowledge. Table 2.4 shows some examples

from RTE-3, a task from this series. The RTE tasks have served as useful benchmarks

for machine learning models for NLI, but their small training sets limit their value for

this purpose for neural network models. Chapter 6 briefly compares the performance

of several non-neural models on RTE-3 with the performance of those same models

on SNLI.

The Sentences Involving Compositional Knowledge dataset (SICK, released as

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 25

As leaders gather in Argentina
ahead of this weekends regional
talks, Hugo Chávez, Venezuelas
populist president is using an
energy windfall to win friends
and promote his vision of 21st-
century socialism.

entailment Hugo Chávez acts as Venezuela’s
president.

Mr. Fitzgerald revealed he was
one of several top o�cials who
told Mr. Libby in June 2003 that
Valerie Plame, wife of the for-
mer ambassador Joseph Wilson,
worked for the CIA.

non-entailment Joseph Wilson worked for CIA.

Table 2.4: Examples of training data from RTE-3, adapted from MacCartney (2009).

The player is dunking the bas-
ketball into the net and a crowd
is in background.

neutral A man with a jersey is dunking
the ball at a basketball game.

Two people are kickboxing and
spectators are not watching.

contradiction Two people are kickboxing and
spectators are watching.

Table 2.5: Examples of training data from SICK.

SemEval 2014 Task 1; Marelli et al. 2014b) was the human-annotated corpus for NLI

until the release of SNLI, at about ten thousand examples. It consists of entailment

examples derived from image and video captions and labeled for three-class classi-

fication. The data collection process involved significant pruning and editing, and

drew on only a few hundred source sentences, leaving the examples in the corpus

somewhat artificially short and self-similar. However, the result is a set of examples

with minimal reliance on idiom or world knowledge, and the only preexisting corpus

large enough to even come close to supporting the training of a neural network-based

model. A few examples are shown in Table 2.5.

The Denotation Graph entailment set (Young et al. 2014) contains millions of

examples of entailments between sentences and artificially constructed short phrases,

but it was constructed using fully automatic methods, and is noisy enough that it is

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 26

A man editing a black and white photo at a computer
with a pencil in his ear.

entailment man sit

A grown lady is snuggling on the couch with a young girl
and the lady has a frightened look.

non-entailment man sit

Table 2.6: Examples of Denotation Graph data.

suitable only as a source of supplementary training data. A couple of typical examples

are shown in Table 2.6.

Outside the domain of sentence-level entailment, Levy et al. (2014) introduce a

large corpus of semiautomatically annotated entailment examples between subject–

verb–object relation triples, and the second release of the Paraphrase Database (Pav-

lick et al. 2015) includes automatically generated entailment annotations over a large

corpus of pairs of words and short phrases.

Chapter 5 briefly discusses the kinds of neural network learning work that can be

done with existing data, and then presents a new corpus, SNLI, which is meant to

be both large enough and of high enough quality to support training low-bias models

like neural networks to do NLI.

2.2 Artificial neural networks

Artificial neural network models (also called neural networks or NNs) are

machine learning models consisting of chains of composed highly-parametric func-

tions called layers. Most applied machine learning systems that create or manipulate

distributed representations either are neural networks themselves or have significant

NN components. Neural network parameters can be initialized randomly and trained

from data—with or without corresponding labels, depending on the specific model

architecture—and they can learn to approximate potentially arbitrarily complex func-

tions (Hornik et al. 1989).

Figure 2.1 illustrates a simple neural network model for a toy single word clas-

sification task that illustrates some simple key components that occur across many

neural network models. Some key components of neural networks are discussed in the

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 27

h0.6, 0.3, 0.1ip(class = i|w = lovely) = e
~li

P
j e

~lj

predicted probabilities
or softmax outputs

h0.7, �0.1, �0.9i~l = tanh(Ml
~l +~bl)

logits or
unnormalized probabilities

h0.4, � 0.7, 0.4, � 0.1, 0.8i~h = tanh(Mh~x+~bh)
hidden state

for hidden layer 1

h�0.8, � 0.2, 0.3, 0.4i~w = V
[lovely]

word embedding
for lovely

Figure 2.1: A simple example neural network designed to predict which of three
classes (e.g. positive, neutral, negative) a word belongs to. The model has five sets
of parameters: the word embedding matrix V , the matrix parameters of the two
tanh layers Mh and Ml, and the bias parameters of the two tanh layers ~bh and ~bl.
When the model is being run, a word embedding vector w is first looked up from the
appropriate row of V , then passed through one layer to yield the hidden state ~h, then
passed through a second layer to yield the logits (unnormalized probabilities) ~l, then
finally passed through the softmax function to produce a distribution over the three
classes. The top two rows of this diagram and the parameters Mh and bh together
represent a softmax layer. The third row and the parameters Ml and bl together
represent a hidden layer.

caption and below, but a full presentation is far beyond the scope of this dissertation.

For a thorough introduction, I refer the reader to the recent textbook by Goodfellow

et al. (2016).

Neural network models use distributed representations of some fixed prespecified

dimension as their sole means of representing information. Correspondingly, one of

the major challenges in designing a neural network model architecture for some task is

finding an appropriate way of transforming the task data into a fixed-size distributed

form for input into the network. For some tasks, this is relatively straightforward:

if the task involves images of a fixed size, for example, each pixel of each image

can be treated as one dimension in a distributed representation. For text, though,

there are two challenges: discrete symbols (generally words) must be transformed

into continuous representations, and this transformation must be able to produce

representations of a consistent dimension from sequences that vary in length. The

former problem is almost universally solved by the technique of word embedding,

but the latter problem—that of sentence encoding—remains an open issue in NLP

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 28

research, and one that I investigate in this dissertation.

2.2.1 Word embeddings in neural networks

Nearly all neural network models in NLP store a vocabulary in which each word (or

word part) is mapped to a vector of some preselected length. Whenever a word is used

as an input to the NN, its embedding vector is looked up and used to represent it. In

many cases these embedding vectors are created (or pretrained) using distributional

methods, as discussed in Section 1.2.3, but when embeddings are used within neural

network models to solve a specific task, an additional approach becomes available:

the full set of embeddings vectors V can be treated as a parameter of a neural network

model, and can be initialized randomly at the start of model training and learned

alongside the other parameters. In this dissertation I use pretrained word embeddings

for most natural language experiments and train task-specific word embeddings for

artificial language experiments (where distributional methods are less applicable) and

elsewhere where noted.

The supervised learning of task-specific representations of discrete symbols can

be traced back at least to the birth of modern neural networks with the introduction

of the backpropagation learning algorithm by Rumelhart et al. (1986), and forms a

significant part of the recent successes of neural network models.

Key prior work Bengio et al. (2006) introduce the use of word embeddings within

the supervised training of neural network models for NLP, using embeddings as in-

puts to a feedforward neural network language model and training them through

backpropagation as part of the broader language model training procedure.

Collobert et al. (2011) provide an important demonstration of the power of learned

vector representations in applied work that requires semantic representations, and in

particular show that a single set of learned vector representations can su�ce for a

diverse set of tasks. They used partially labeled data, with labels from a number

of di↵erent tasks, to learn a general-purpose set of vector representations for their

vocabulary of English. Their model was structured as a set of neural networks with

shared word representations, and was capable of outputting part of speech (POS)

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 29

...

a or b

or b

bor

a

(a) The architecture for tree-structured
sentence models. Terminal nodes (light
blue) are learned embeddings and non-
terminal nodes (indigo) are NN, NTN, or
TreeLSTM layers.

a

a

or

a or

b

a or b ...

(b) The architecture for the sequence-
based sentence models. Nodes in the
lower row are learned embeddings and
nodes in the upper row are RNN, LSTM,
or GRU layers.

Figure 2.2: Examples of tree- and sequence-based neural network sentence-encoding
models, instantiated for the simple sentence a or b.

tags, named entity tags, shallow parses, language model scores, and semantic role

labels (SRL), all with performance at or near the state of the art for that time.

Countless subsequent studies on neural networks for natural language processing

at the word, sentence, and document levels have gone on to build on this line of work.

2.3 Neural networks for sentence encoding

Individual neural network layers require fixed length inputs. Thus, if a neural network

is to handle sentences of varying lengths, it needs to be accompanied by a compo-

nent for converting these sentences into suitable fixed-length vectors. A simple such

technique is to look up the embedding vectors for each of the words in a sequence

and sum or average them, yielding a single vector of the same dimension. This strat-

egy, often called continuous bag of words (CBOW) is e↵ective in some simple

tasks, but it is impossible for a network to recover any word order information from

representations that are produced in this way.

Instead, most modern neural network models that operate over word sequences

include a special learned neural network component called a sentence encoder.

This component has repeating parts that can be added or removed to fit the structure

and size of the input sentence, and generally takes one of three basic forms:

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 30

• In recurrent or sequence-based networks (Figure 2.2b; Elman 1991, Suts-

kever et al. 2014), including long short-term memory networks (LSTMs; Hochre-

iter & Schmidhuber 1997) and gated recurrent unit networks (GRUs; Cho et al.

2014a), the input is fed into the network in sequential order (from left to right

or vice versa for text) with the network updating a hidden state after each input

is processed.

• In convolutional networks (LeCun et al. 1998, Kalchbrenner et al. 2014,

Zhang et al. 2015, Conneau et al. 2016), information from all parts of a sentence

are processed in parallel using a set of filters that look at fixed-size subsequences

of words.

• In recursive or tree-structured networks (Figure 2.2a; Goller & Küchler

1996, Socher et al. 2011a), the input is fed in according to a tree structure

(generally produced by a parser), in which hidden representations are formed

for increasingly large sub-spans of the input data following the principle of

compositionality.

Of these, sequence-based models have been the most widely used in practice

and tree-structured models have an independently compelling theoretical motivation

through compositionality and a strong track record in their limited applications so

far. Convolutional models have not been as widely used, and I will not be focusing

on them in this dissertation. The references above provide further discussion.

While sentence encoders are very common in work on natural language under-

standing with neural networks, their roles can vary. In recent work on soft attention

(see Section 2.3.5), a sentence encoder is used to encode a sentence, but some of its

internal state information is used to directly supply information to downstream model

components, shortcutting the encoder’s explicit output representation. In addition,

some models like that of Parikh et al. (2016) avoid sentence encoding entirely, and

build representations of multiple-sentence inputs without ever constructing represen-

tations for the constituent sentences.

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 31

2.3.1 Recurrent neural networks

The simplest sequence-based model, the plain recurrent neural network, computes

representations for sentences by applying the following function repeatedly, consuming

input words x(t) one by one from left to right before producing an output ~y(T)

RNN

at the

final step T .

~y
(t)
RNN

= f(M

"
~y
(t�1)

RNN

~x(t)

#
+~b)(2.4)

Unlike a plain RNN, an LSTM has several hidden activation vectors at each time

step with di↵erent purposes, two of which (~h and ~c) are transmitted across steps.

The below equations define an LSTM, with � designating element-wise (Hadamard)

product.

2

66664

~i

~f

~o

~g

3

77775
=

2

66664

�

�

�

tanh

3

77775

W

"
~h(t�1)

~x(t)

#
+~b

!
(2.5)

~c(t) = ~f � ~c(t�1) +~i� ~g(2.6)

~h(t) = ~o� ~c (t)(2.7)

The ~c states are meant to serve as a long-term memory and are not passed through

full multiplicative neural network layers between steps, but are instead updated addi-

tively. The ~c states can thus reliably propagate a gradient signal from each time step

to the step before it, which enables LSTMs to learn much more e↵ectively than plain

RNNs on long sequences. The ~h state serves as the primary output of the network,

with the final state ~h(T) acting as the input to a downstream task model.

The non-recurrent internal variables ~i, ~f , ~o, and ~g are computed anew at each

step and govern the flow of information in and out of ~c through soft continuous

gating operations: the input gate ~i (in (0, 1)) indicates which elements of ~c are to be

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 32

written to, the forget gate ~f (in (0, 1)) indicates which elements of ~c are to be zeroed

out, the output gate ~o (in (0, 1)) indicates which elements of ~c are to be passed to ~h

for use in the current step’s computation, and ~g (in (�1, 1)) supplies new values to

be written to ~c.

Both RNNs and LSTMs can be stacked (see, for instance, Sutskever et al. 2014) to

create a more powerful network for a given sequence length. In this case, the hidden

activation (~h or ~y) from each time step of one network is used as the input (~x) to a

corresponding time step in another network, which is jointly trained but separately

parameterized.

Key prior work Sequence based models have been used extensively in recent years

as probabilistic language models (Mikolov et al. 2010, Jozefowicz et al. 2016), in which

a sequence of words (generally representing a partial sentence) is fed into a network

which, after each word, generates a latent representation which can be used to predict

a distribution over possible next words.

Concurrently-authored papers by Sutskever et al. (2014) and Bahdanau et al.

(2015) show that sequence-based NNs can also be used to encode the meanings of full

sentences in a way that can be subsequently decoded in a di↵erent language to form a

machine translation system. The latter work achieved state-of-the-art results, beating

translation-specific machine learning systems that have been developed and tuned

over many years, suggesting that distributed representations from neural networks

are among the best tools available for the representation of natural language meaning

in applied settings. A great deal of subsequent work has built on these successes.

Beyond these two core application areas, sequence-based models have been used

for a wide range of other NLP tasks, including parsing (Dyer et al. 2015, Vinyals

et al. 2015), text generation (Wen et al. 2015), and sentiment analysis (Tai et al.

2015) among many others.

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 33

2.3.2 Tree-structured neural networks

Tree-structured recursive neural networks (abbreviated as TreeRNNs here, referred to

ambiguously as RNNs, RcNNs, or RecNNs in some earlier work) represent an alterna-

tive approach to sentence encoding. Unlike sequence-based networks, which compose

meanings from left to right, TreeRNNs build on the observation that the composi-

tion of meaning in natural language follows a tree structure that closely resembles the

syntactic structure of sentences (Lambek 1958, Lewis 1970, Montague 1973, Szabolcsi

2009).

TreeRNNs have a principled foundation in compositionality and have succeeded

at tasks involving at least some aspect of natural language meaning, so they are a

natural object of study in this dissertation. Artificial data experiments in Chapter 3

show that they can e�ciently learn key aspects of NLI in controlled settings, and

further such experiments Chapter 4 show that they are much more e↵ective than plain

sequential RNNs on data generated by a tree-structured grammar. Chapter 7 presents

technical innovations that make it possible to apply TreeRNN-style compositionality

to large-scale NLP learning problems like the one posed by SNLI.

In a TreeRNN, the composition function, a neural network layer, maps a pair of

word or phrase vectors of length D to a single vector of length D, which can then

be merged again with another word or phrase vector to represent a more complex

phrase. Once the sentence-level vector representation—the vector corresponding to

the root of the parse tree—has been derived in this way, it serves as a fixed-length

input for some subsequent function.

The plain TreeRNN applies a classic NN layer as a composition function to the

concatenated vectors for two children, as in (2.8). The TreeRNTN layer function adds

an additional term, shown in (2.9), following the version of Chen et al. (2013).

~y
TreeRNN

= f(M

"
~x
left

~x
right

#
+~b)(2.8)

~y
TreeRNTN

= ~y
TreeRNN

+ f(~xT
left

T[1...n]~x
right

)(2.9)

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 34

Here, ~x
left

and ~x
right

are the column vector representations for the left and right chil-

dren of the node, and ~y is the node’s output. The TreeRNN concatenates them,

multiplies them by an n ⇥ 2n matrix of learned weights, and adds a bias ~b. The

TreeRNTN adds a learned third-order tensor T, dimension n⇥ n⇥ n, modeling mul-

tiplicative interactions between the child vectors. Both layer functions are wrapped

with the elementwise nonlinearity f(x) = tanh(x).

An alternative, TreeLSTM composition layer function (Tai et al. 2015), generalizes

the LSTM neural network layer to tree- rather than sequence-based inputs. It shares

with the LSTM layer the idea of representing intermediate states as a pair of an active

state representation ~h and a memory representation ~c. I use the following formulation:

2

66666664

~i

~fl
~fr

~o

~g

3

77777775

=

2

66666664

�

�

�

�

tanh

3

77777775

W

composition

"
~h
left

~h
right

#
+~b

composition

!
(2.10)

~c = ~fl � ~c
left

+ ~fr � ~c
right

+~i� ~g(2.11)

~h = ~o� ~c(2.12)

where � is the sigmoid activation function, � is the element-wise product, and the

pairs h~h
left

,~c
left

i and h~h
right

,~c
right

i come from the two children of the node being com-

puted. The result of this function, the pair h~h,~ci, is the representation of the current

tree node. As in the LSTM RNN, though, the ~c portion of this state is meant to be

isolated from the rest of the network, and only the ~h portion of this state is used to

represent a phrase or sentence in the downstream task model. The intuition behind

the five gates ~i, ~fl, ~fr, ~o, and ~g are the same as those behind the four gates of the

LSTM described in Section 2.3.1, with two forget gates instead of one to correspond

to the two di↵erent inputs. Each vector-valued variable listed is of dimension D.

There has been little work done to date on the precise types of syntactic informa-

tion that TreeRNNs find most valuable in large-scale language learning experiments

(and, correspondingly, on what approaches to parsing will yield the best TreeRNN

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 35

performance). This remains a valuable direction for future work.

Key prior work TreeRNNs were introduced in Socher et al. (2011a) based on ear-

lier work by Goller & Küchler (1996), and subsequently applied successfully to a range

of tasks involving natural language meaning. Several versions of the tree-structured

neural network have been proposed, including the recursive neural tensor network

and TreeLSTM discussed above, deep recursive NNs (Irsoy & Cardie 2014), which

learn several layers to extract increasingly abstract information at each tree node,

dependency tree NNs (Socher et al. 2014), which operate over the non-binary trees

produced by dependency parsers, and global belief or upward-downward TreeRNNs

(Paulus et al. 2014, Ji & Eisenstein 2015), which use information from the entire tree

to compute a final representation at each node.

TreeRNNs have performed well on tasks like sentiment analysis (Socher et al.

2013, Tai et al. 2015) which can be learned from moderate amounts of data. However,

the use of a di↵erent tree structure for each sentence can cause these models to be

dramatically slower to train than sequence-based models, limiting their application

elsewhere in NLP. Chapter 7 discusses this issue in more detail and o↵ers a solution.

2.3.3 A note on learning

The models that I study and develop, like most modern neural network models,

are trained using minibatch stochastic gradient descent (SGD). In minibatch SGD,

training takes the form of a sequence of steps. At each step, backpropagation is used

to compute the gradient of the trainable parameters of the model with respect to

some objective function (some continuous measure of task success) aggregated over

a set of randomly sampled examples from the training set (the size B of this set is

fixed as a hyperparameter), which indicates the direction in which to adjust these

parameters to improve that objective. The parameters are then adjusted slightly in

the direction of the gradient, and another step is taken with a new batch of examples.

This process repeats until training converges (i.e., the parameters stop changing) or

until some predetermined early stopping criterion indicates that the model’s actual

task performance is not likely to improve further.

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 36

Gradient descent algorithms, including minibatch SGD, require the specification

of an update rule which determines how much each parameter will be adjusted in the

appropriate direction at each step. This choice is at least somewhat independent of

the choice of the type of network chosen, and new optimization functions are being

introduced frequently. The non-convex nature of neural network models makes this

choice an important one: using an inappropriate or inappropriately tuned optimiza-

tion function can lead to a model that converges early on a poor solution, or one that

never converges to a solution at all.

There is no obvious theoretical reason to choose any one update rule for the

research described here. As such, I use the method that appears to be best supported

at the time that I start each experiment. I note in each chapter which rule I use.

2.3.4 From sentence encoding to inference

This dissertation incorporates work that is, to the best of my knowledge, the first

application of deep learning methods to entailment classification.1 Because of this,

even though my aim in studying NLI is to understand and improve existing sentence-

encoding architectures, it is necessary to propose a novel model structure to adapt

those model components to this task. This architecture should be as simple as possible

while still serving as a viable setting in which to train usable models.

I propose the structure shown in Figure 2.3, which makes it possible to use the

sentence-pair classification task of NLI to train sentence-encoding models. In it, each

sentence is embedded separately using some encoding sub-network such as a tree or

sequence model, a comparison layer (or stack of layers) generates a set of features

reflecting the relationship between the two representations, and a softmax classifier

uses those features to predict a class label. This model does not allow context from

either sentence to be used in computing the representation of the other sentence, as

attention-based models (see Section 2.3.5). This limits model performance in practice,

but it is helpful in allowing the sentence-encoding sub-networks to be reused without

modification and in creating a bottleneck to force the sub-networks to encode as much

1Section 6.4.1 surveys concurrent work on deep learning for entailment.

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 37

softmax classifier

comparison layer(s)

premise vector hypothesis vector

sentence model
with premise input

sentence model
with hypothesis input

Figure 2.3: In the experiments in this dissertation, two copies of a sentence model—
like a tree or sequence model as in Figure 2.2—encode the two input sentences. A
multilayer classifier component then uses the resulting vectors to predict a label that
reflects the logical relationship between the two sentences.

information as possible into the representations of interest. Every experiment in this

dissertation uses a version of this model structure.

2.3.5 Other approaches to sentence encoding

Functional semantic types and higher-order tensors

Another line of research (Coecke et al. 2011, Clarke 2012, Clark et al. 2013, Baroni

et al. 2014, Grefenstette 2013, Grefenstette et al. 2014, Fried et al. 2015, Bankova et al.

2016) attempts to translate formal notions of function application in compositional

semantic structure into a distributional semantics-oriented framework. Clarke (2012)

in particular defines a notion of entailment within this framework. None of the models

in this framework are designed to be directly implementable as machine learning

systems on real data, but rather attempt to define vector and tensor encodings of

semantics that are in some sense human-interpretable or formally correct.

It is likely that further developments in this line of research could come to address

the key questions of this dissertation by clarifying some of the limits on what seman-

tic information can be e�ciently represented in learned distributed representations.

However, my focus here is on probing the capabilities of distributed representations

by experiment in a learning setting, and there are considerable obstacles to taking

that approach with these models. Crucially, these models allow for words to be rep-

resented by tensors of arbitrarily high order, and in particular require some function

words to have order as high as five. A tensor in this context is a generalization of a

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 38

matrix: a first order tensor is a vector, a second order tensor is a matrix, and an N-th

order tensor is a collection of numeric values arranged along N dimensions. Attempt-

ing to learn fifth order tensors directly even for one such word would add a parameter

to the model with hundreds of millions of scalar components given a conservative

vector dimension of 50. Grefenstette & Sadrzadeh (2013) and Fried et al. (2015) have

taken some steps towards showing the possibility of learning within this framework,

but much work remains to be done before these models can be implemented in NLP.

Soft attention

Soft attention (Bahdanau et al. 2015, Luong et al. 2015a) is a technique which

gives the downstream model (here, the classifier) the potential to access each input to-

ken individually through a soft content addressing system. This removes the sentence

encoding as a bottleneck through which all semantic information must flow. While

this change simplifies the problem of learning complex correspondences between input

and output, it also makes it more di�cult to build learning experiments that focus

on the behavior of the encoder. Because of this, I chose to set aside these models and

focus on models that represent sentences a single fixed length vectors.

2.4 Additional prior work

2.4.1 Reasoning in distributed representations

While the work presented in this dissertation is likely the first to apply neural network

models to NLI, it is not the first to attempt to use neural networks or distributed

representations on practical reasoning problems.

Widdows (2004) presents a system for constructing query vectors for use in in-

formation retrieval and builds a practical quasilogic around it which is capable of

representing conjunction (rock AND blues) using vector addition. Subtraction (rock

NOT blues) is represented through the operation of finding the orthogonal vector,

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 39

expressed as:

(2.13) a NOT b = a� (a · b)b

Widdows & Cohen (2014) present a set of extensions to this system to enable it to

support the approximate encoding and retrieval of relation triples from open relation

domains (e.g. hinsulin, treats, diabetesi) and a form of analogical reasoning (similar

to that of Mikolov et al. 2013b, below). This work is primarily focused on its target

domain of information retrieval, and does not lend itself to direct adaptation to the

variety of logical relation types that would be needed for NLI.

Socher et al. (2012) provide a brief proof of concept to show that Boolean negation

and conjunction can be precisely implemented in a minimal recursive neural network

model with one-dimensional (scalar) binary word representations.

Mikolov et al. (2013b) introduces a simple and strikingly e↵ective arithmetic

method for predicting the answers to analogy problems using modern distributional

word embeddings. They show, for example, that the representations for king, queen,

man, and woman roughly validate the following equation.

(2.14) king�man+ woman = queen

This work and related subsequent work has provided a valuable window into the

reasons for the success of distributional word vectors, but it has so far proved di�cult

to find or create any kind of similar interpretable structure in general-purpose sentence

encodings.

Grefenstette (2013) proposes a way of implementing a simple logic within a vector

space model with tensors of di↵erent orders representing functions (as in Coecke et al.

2011and subsequent work discussed in Section 2.3.5), and vectors of two di↵erent

dimensions representing the logical primitives of entities and truth values. This yields

a system that combines a form of distributional semantics with some of the logical

foundations of formal semantics. He proves that in this implementation, quantifiers

are not linear operators, and must be represented using custom nonlinear functions,

in an entirely di↵erent style from the rest of the terms of the logic.

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 40

Weston et al. (2016) introduce a set of question-answering tasks that are meant to

test the abilities of neural network question-answering models to do several kinds of

domain-specific reasoning involving things like spatial relations, timelines, and trans-

fers of possession. These tasks are presented as natural language, but are generated

from simple artificial grammars, making answer selection, rather than question inter-

pretation, the main point of di�culty in the task, and making them therefore largely

complementary to the work on sentence interpretation that this dissertation presents.

Vendrov et al. (2016) propose a novel objective function for embedding vectors,

including word and sentence encodings, which explicitly manifests the notion of entail-

ment as a simple geometric relation between points in space. This represents a valu-

able step towards creating interpretable embeddings. However, the new objective only

supports relations that induce partial orders, which makes it incapable of explicitly

encoding exclusion relations like | or ^ , and makes it only partially applicable to the

view of semantics that I pursue in this dissertation.

In very recent work, Rocktäschel & Riedel (2016) introduce the neural theorem

prover and the accompanying method of di↵erentiable backward chaining. This model

acts as a theorem prover that uses distributed representations of symbols to search

for symbolic proofs of simple expressions. While it operates over directly specified

symbols and rules, rather than expressions of natural language, and it is sharply

limited in the number and complexity of the rules that it can use, this model is a clear

demonstration of the value of distributed representations and their corresponding

learned similarity metrics in logical reasoning over language-like domains.

2.4.2 Analyzing learned representations for language

This dissertation focuses on a behavioral approach to understanding the abilities of

neural network models. I evaluate models only by running them from end to end

on the kinds of data that they were meant to operate over. I should note, though,

that there has been a good deal of prior work on the substantially more di�cult—but

also potentially quite informative—approach of directly inspecting and analyzing the

internal state vectors of neural networks.

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 41

In some of the earliest work on recurrent neural networks in the modern sense,

Elman (1989) presents a simple and intuitive method for analyzing the behaviors of

RNNs: projecting hidden states into two dimensional space using principal compo-

nent analysis (PCA) and then plotting those states as points in space to compare

activations for di↵erent sequences, or for the same sequence at di↵erent time points.

This approach has been widely used since (e.g. Vendrov et al. 2016, Narasimhan

et al. 2015), often with the substitution of t-SNE (Van der Maaten & Hinton 2008)

for PCA.

In other key early work on RNNs, Elman (1990) investigates the memory capacities

of recurrent models trained on next word prediction (language models) over simple

rule-based artificial languages. The conclusions in that work draw both on patterns in

model errors and on the results of a hierarchical clustering analysis over model hidden

state vectors. Giles et al. (1992) study similar models, and introduce a method for

extracting discrete representations of deterministic regular grammars from them after

training. A related line of work, exemplified by Garcez et al. (2001), attempts to find

algorithms for extracting logical rules from feedforward neural networks trained on

nonlinguistic reasoning tasks.

In more recent work, Karpathy et al. (2015) proposes a family of techniques

(broadly building on this earlier work) for visualizing modern recurrent neural net-

work language models. While these techniques are helpful aids for analysis, they have

not yet yielded clear insights into the internal structure of sentence representations.

Li et al. (2016) apply similar techniques, as well as a novel derivative-based method,

to sentence-encoding models for sentiment analysis and autoencoding. They find

that LSTM-based models, unlike simpler RNNs, tend to show reasonable and inter-

pretable behaviors within the scope of the study. Kádár et al. (2016) introduce some

additional techniques for the analysis of these models, with a focus on elucidating

the di↵erences between the representations learned by language models and models

trained to predict visual features from image captions. This work also provides a

helpful survey of work on analyzing neural networks in computer vision.

In a more model-specific approach to analysis, most recent neural attention mod-

els (Bahdanau et al. 2015, Rocktäschel et al. 2016, i.a.) have been presented with

CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS 42

explicit visualizations of the model-internal lexical alignments that they induce while

computing sentence pair relationships.

While this recent work represents a recent surge of progress into the analysis of

learned representations, substantial opportunities for future work remain. Of partic-

ular relevance to this dissertation, there is still no technology that can come close to

revealing the correspondences (or lack thereof) between learned representations for

language and discrete representations like logical forms or the structured distributed

representations of Coecke et al. (2011).

Chapter 3

Logical reasoning in

tree-structured models

This chapter presents work that was published as Bowman, Potts & Manning (2015c)

and Bowman, Potts & Manning (2015d). My only coauthors on these papers were

my advisors, who were primarily involved in an advisory role rather than in a direct

collaboration. However, both contributed edits and a small amount of writing, and

Christopher Potts was largely responsible for the design and creation of the artificial

dataset used in Section 3.5.

3.1 Introduction

This chapter describes four machine learning experiments that directly evaluate the

abilities of tree-structured neural network models to learn representations that sup-

port specific semantic behaviors. These tasks follow the format of natural language

inference, in which the goal of the model is to determine the relationship between the

meanings of two expressions.

In order to train models on this task, I use a version of the architecture introduced

in Section 2.3.4. In this architecture, the model uses two TreeRNN or TreeRNTN

sentence-encoding components to build representations of two input sentences, and

then uses a classifier to produce a judgment for the input sentence pair using only

43

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 44

these representations. Using separate representations in this way makes it possible to

directly evaluate the ability of the tree-structured sentence-encoding models to learn

to represent all of the necessary semantic information in their output representations.

In three of the four experiments in this chapter, I use artificial data to test the

models’ ability to learn to perform specific patterns of inference that appear to be

prevalent in natural language reasoning. I do this by training them to reproduce

the judgments of the natural logic of MacCartney & Manning (2009). This logic

defines seven mutually-exclusive relations of synonymy, entailment, contradiction,

and mutual consistency (introduced previously in Table 2.1), and it provides rules of

semantic combination for projecting these relations from the lexicon up to complex

phrases.

The goal of these artificial data experiments is to study behaviors that are likely

to be di�cult for neural network sentence encoders to learn, but are nonetheless

likely to be necessary for successful NLI. These experiments involve training models

to reproduce the behaviors of a particular logical system in a constrained setting, but

I do not claim that the models that I study are e↵ective at learning to do logical

inference in any more general sense. I leave the study of the limits of the logical

abilities of these models to future work.

The first two experiments in this chapter cover reasoning with logical relations be-

tween atomic lexical items (Section 3.3), both on artificial data based on natural logic

and on similar natural data extracted from WordNet (Miller 1995, Fellbaum 2010).

The next experiment (Section 3.4) covers reasoning with statements constructed com-

positionally from recursive functions, and the final experiment (Section 3.5) extends

this to cover the additional complexity that results from introducing quantifiers.

Though the performance of the plain TreeRNN model is somewhat poor in one

experiment, I find that the stronger TreeRNTN model generalizes well in every case,

suggesting that it can learn to simulate the target logical concepts. Overall, these

experiments fail to find any fundamental obstacle that tree-structured neural networks

face in learning semantic representations for natural language, and indeed find that

these models can extract complex generalizations in di�cult settings without explicit

prompting to do so. This suggests that they should be able to learn well and e�ciently

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 45

P (<) = 0.8

all reptiles walk vs. some turtles move

some turtles move

movesome turtles

turtlessome

all reptiles walk

walkall reptiles

reptilesall

Figure 3.1: In the model evaluated in this chapter, based on the architecture in Sec-
tion 2.3.4, two separate tree-structured networks (blue and lavender) build up vector
representations for each of two sentences using either NN or NTN layer functions
(lavender). A comparison layer (orange) then uses the resulting vectors to produce
features for a classifier (red).

in the real natural language settings that I examine in the subsequent chapters of this

dissertation.

3.2 Methods

This chapter focuses on the evaluation of TreeRNN sentence encoders. They have a

clear theoretical motivation from compositionality, and they are the among the most

e↵ective preexisting sentence encoding models available.

To apply these tree-structured models to this task, I use the sentence pair model

architecture introduced in Section 2.3.4 and depicted in Figure 3.1. In it, the two

expressions being compared are processed separately using a pair of tree-structured

sentence encoders that share a single set of parameters. The resulting vectors are fed

into a separate comparison layer that is meant to generate a feature vector capturing

the relation between the two phrases. The output of this layer is then given to a

softmax classifier, which produces a distribution over the seven natural logic relations

introduced in Table 2.1.

For the sentence-encoding portions of the network, I evaluate TreeRNN models

with the standard NN layer function (2.8) and with the more powerful neural tensor

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 46

network layer function (2.9), as well as a simple sum-of-words baseline. While the

TreeRNN layer functions that I study are not the only ones available, I use just these

two here as a case study, and hypothesize that positive results are likely to generalize

well to tree-structured models with other strong layer functions.

The comparison layer uses the same layer function as the composition layers for

the TreeRNNs, and uses a plain TreeRNN layer for the sum-of-words model. In all

cases, the comparison layer has an independently learned set of parameters and a

separate nonlinearity function. Rather than use a tanh nonlinearity here, I found

better results with the leaky rectified linear function of Maas et al. (2013), depicted

in 3.1.

(3.1) f(x) = max(x, 0) + 0.01min(x, 0)

To run the model forward, I assemble the two tree-structured networks so as to

match the structure of each sentence. These structures are included in the source

data for the experiments in this chapter, but can also be produced using a parser in

natural language settings. The word vectors are then looked up from the vocabulary

embedding matrix V (one of the learned model parameters), and the composition and

comparison functions are used to pass information up the tree and into the classifier.

For an objective function, I use the negative log likelihood of the correct label with

tuned L2 regularization.

I initialize parameters randomly from a uniform distribution, using the heuris-

tically chosen range (�0.05, 0.05) for layer parameters and (�0.01, 0.01) for embed-

dings, and train the model using minibatch stochastic gradient descent (SGD) with

learning rates computed using AdaDelta (Zeiler 2012). The classifier feature vector

is fixed at 75 dimensions and the dimensions of the recursive layers are tuned manu-

ally. All models are trained on CPU, with training times varying from hours to days

across experiments. (Issues of speed and GPU use are revisited more extensively in

Chapter 7.) On the experiments which use artificial data, I report mean results over

five fold cross-validation, where variance across runs is typically no more than two

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 47

percentage points. In addition, because the distribution of labels is not necessarily

well balanced in the artificial datasets used in this chapter, I report both accuracy

and macroaveraged F1.1

3.3 Reasoning about lexical relations

Since natural logic is set in the inferentialist view of semantics, the meanings for

expressions are given by their inferential connections with other expressions. For

instance, turtle is analyzed, not primarily by its extension in the world, but rather by

its lexical network: it entails reptile, excludes chair, is entailed by sea turtle, and so

forth. With generalized notions of entailment and contradiction, these relationships

can be defined for all lexical categories as well as complex phrases, sentences, and

even whole texts. The resulting theories of meaning o↵er valuable new analytic tools

for tasks involving database inference, relation extraction, and textual entailment.

Natural logic aligns well with distributed (e.g. vector-based) approaches to repre-

senting words, which also naturally model meaning relationally. However, it remains

an open question whether it is possible to train such representations to support the

kinds of logical reasoning captured by natural logic. In the experiments in this section,

I evaluate these models’ ability to learn the basic algebra of natural logic relations

both from simulated natural logic data (Section 3.3.1) and from the WordNet noun

graph (Section 3.3.2). The simulated data o↵er analytic insights into what the mod-

els learn and the WordNet data show how they fare with a real natural language

vocabulary. I find that only the NTN is able to fully learn the underlying algebra,

but that both models excel in the WordNet experiment.

3.3.1 Learning to represent and infer natural logic relations

The simplest kinds of deduction in natural logic involve atomic statements over pairs

of individual lexical items using the seven relations in Table 2.1. For instance, from

the relation p
1

< p
2

between two lexical items, one can infer the relation p
2

= p
1

1I compute macroaveraged F1 as the harmonic mean of average precision and average recall, both
computed for all classes for which there is test data, setting precision to 0 where it is not defined.

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 48

⌘ < = ^ | ` #

⌘ ⌘ < = ^ | ` #

< < < · | | · ·
= = · = ` · ` ·
^ ^ ` | ⌘ = < #

| | · | < · < ·
` ` ` · = = · ·
· · # · · ·

Table 3.1: In Section 3.3.1, I assess the models’ ability to learn to do inference over
pairs of relations using the rules represented in this figure (adapted from MacCartney
2009), which are derived from the definitions of the relations in Table 2.1. As an
example, given that p

1

< p
2

and p
2

^ p
3

, the entry in the < row and the ^ column
indicates that we can conclude p

1

|p
3

. Cells containing a dot correspond to situations
for which no valid inference can be drawn with certainty.

by applying the definitions of the relations directly. If one is also given the relation

p
2

< p
3

one can conclude that p
1

< p
3

by basic set-theoretic reasoning (transitivity

of <). It is also possible to make inferences like these from two pairs that share an

argument but not a relation type. For example, given that p
1

< p
2

and p
2

^ p
4

, one can

conclude that p
1

|p
4

. The full set of sound such inferences on pairs of premise relations

is depicted in the join table shown as Table 3.1. Though these basic inferences do

not involve compositional sentence representations, any successful reasoning using

compositional representations will rely on the ability to perform sound inferences of

this kind in order to be able to use unseen relational facts within larger derivations.

This first experiment studies how well each model can learn to perform them them

in isolation.

This problem is of limited formal and computational complexity. It can be im-

plemented relatively simply in a discrete system, and it is plausible that some style

of feedforward neural network model (i.e. some neural network model limited to per-

forming a fixed amount of computation per example) could be configured so as to

simulate it e↵ectively. It is not at all clear, though, whether an embedding-based

model trained using conventional methods is up to the task.

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 49

�
⇢

⇠
⇡{a, b, c}

⇣⇣⇣⇣⇣
PPPPP�

⇢
⇠
⇡p1, p2

{a, b}

�
⇢

⇠
⇡p3

{a, c}

�
⇢

⇠
⇡p4

{b, c}

⇣⇣⇣⇣⇣
PPPPP
⇣⇣⇣⇣⇣

PPPPP�
⇢

⇠
⇡p5, p6

{a}

�
⇢

⇠
⇡{b}

�
⇢

⇠
⇡p7, p8

{c}

PPPPP
⇣⇣⇣⇣⇣�

⇢
⇠
⇡{}

Figure 3.2: Example boolean structure, shown with edges indicating inclusion. The
terms p

1

–p
8

name the sets. Not all sets have names, and some sets have multiple
names, so that learning ⌘ is non-trivial.

Experiments

I begin by creating a world model on which to base the statements in the train and

test sets. This takes the form of a small Boolean structure in which terms denote

sets of entities from a small domain. Figure 3.2 depicts a structure of this form with

three entities (a, b, and c) and eight proposition terms (p
1

–p
8

). I then generate a

relational statement for each pair of terms in the model, as shown in Table 3.2. I

divide these statements evenly into train and test sets, and delete the test set examples

which cannot be proven from the train examples—those for which there is not enough

information for even an ideal system to choose a correct label. In each experimental

run, I create a model with 80 terms over a domain of 7 elements, yielding a training

set of 3200 examples and a test set of 2960 examples.

I train models with both the NN and NTN comparison functions on these datasets.

In both cases, the models are implemented as described in Section 3.2. Since the items

being compared are single terms rather than full tree structures, the composition

layer is not used, and the two models are not recursive. Because of this, the plain

TreeRNN is equivalent to the sum-of-words model in this setting. I simply present the

each model with the (randomly initialized) embedding vectors for each of two terms,

ensuring that the models have no information about the terms being compared except

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 50

Train Test

p
1

⌘ p
2

p
2

^ p
7

p
1

= p
5

p
2

= p
5

p
4

= p
8

p
5

⌘ p
6

p
5

| p
7

p
7

< p
4

p
7

^ p
1

p
8

< p
4

Table 3.2: A few examples of atomic statements about the model depicted above.
Test statements that are not provable from the training data shown are crossed out.

Train Test

only 53.8 (10.5) 53.8 (10.5)
15D NN 99.8 (99.0) 94.0 (87.0)
15D NTN 100 (100) 99.6 (95.5)

Table 3.3: Performance on the semantic relation experiments. These results and all
other results on artificial data are reported as mean accuracy scores over five runs
followed by mean macroaveraged F1 scores in parentheses. The # only entries reflect
the frequency of the most frequent class.

for the relations between them that appear in the training data.

Results

The results (Table 3.3) show that NTN is able to accurately encode the relations

between the terms in the geometric relations between their vectors, and is able to

then use that information to recover relations that are not overtly included in the

training data. The NN also generalizes fairly well, but makes enough errors that it

remains an open question whether it is capable of learning representations with these

properties. It is still possible that di↵erent optimization techniques or finer-grained

hyperparameter tuning could lead an NN model to succeed.

As an example from the test data, both models correctly labeled p
1

< p
3

, poten-

tially learning from the training examples {p
1

< p
51

, p
3

= p
51

} or {p
1

< p
65

, p
3

=

p
65

}. On another example involving comparably frequent relations, the NTN correctly

labeled p
6

= p
24

, likely on the basis of the training examples {p
6

` p
28

, p
28

^ p
24

},

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 51

while the NN incorrectly assigned it #.

These results are quite promising for the ability of these models to learn broadly

useful representational systems for natural language. Both models succeeded in in-

ferring a complex logic (the logic described by Table 3.1) from a set of training data,

despite being trained to merely memorize that data with no explicit incentive to

make high-level generalizations of this kind. The next section shows that this type

of behavior is not limited to small artificial lexica, and that both models can learn to

generalize in a similar fashion over a large vocabulary of English words as well.

3.3.2 Reasoning about lexical relations in WordNet

Using simulated data as above is reassuring about what the models learn and why,

but it is also important to know how they perform with a real natural language

vocabulary. Unfortunately, as far as I am aware, there are no available resources that

annotate such a vocabulary with the relations from Table 2.1. However, the relations

in WordNet (Miller 1995, Fellbaum 2010) come close and pose the same substantive

challenges within a somewhat easier classification problem.

I extract three types of relation from WordNet. Hypernym and hyponym are

represented explicitly in the WordNet graph structure, and correspond closely to the

= and < relations from natural logic. As in natural logic, these relations are mirror

images of one another: if dog is a hyponym of animal (perhaps indirectly by way of

canid, mammal, etc.), then animal is a hypernym of dog. I also extract coordinate

terms, which share a direct hypernym, like dalmatian, pug, and puppy, which are

all direct hyponyms of dog. Coordinate terms tend to exclude one another, thereby

providing a loose approximation of the natural logic exclusion relation |. WordNet’s

antonym relation, however, is both too narrowly defined and too rare to use for

this purpose. WordNet defines its relations over sets of synonyms, rather than over

individual terms, so I do not include a synonym or equivalent relation, but rather

consider only one member of each set of synonyms. Word pairs which do not fall into

these three relations are not included in the dataset.

To limit the size of the vocabulary without otherwise simplifying the learning

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 52

underachiever hyponym enrollee
agnate coordinate enate

organism hypernym planula
psittacosaur hyponym vertebrate
organism hypernym celt

Table 3.4: Randomly selected examples of lexical relations extracted from WordNet.

problem, I extract all of the instances of these three relations for single word nouns

in WordNet that are hyponyms of the node organism.n.01. In order to balance

the distribution of the classes, I slightly down-sample instances of the coordinate

relation, yielding a total of 36,772 relations among 3,217 terms. Examples of the final

result of the extraction process are shown in Table 3.4.

The model and training methods used in this experiment di↵er slightly from those

used elsewhere in this chapter, both in the use of a di↵erent label set and in other

ways. Embeddings are fixed at 25 dimensions and are initialized either randomly or

using distributional word vectors pretrained using GloVe (Pennington et al. 2014).2

In order to allow the model to reason over a vector space that is structured di↵erently

from that of GloVe, I introduce an additional tanh neural network layer between the

embedding input and the comparison function. The feature vector produced by the

comparison layer is fixed at 80 dimensions. Finally, this experiment was conducted

before the other experiments in this chapter, and uses the AdaGrad (Duchi et al.

2011) parameter update rule during training rather than the AdaDelta rule used

elsewhere. While this may have contributed to some instability during learning for

this experiment, the final results are strong enough that a better update rule could

not plausibly o↵er any substantial improvements.

I report results below using cross-validation, choosing a disjoint 10% test sample

for each of five runs. Unlike in the previous experiment, it is not straightforward

here to determine in advance how much data should be required to train an accurate

model, so I performed training runs with various fractions of the remaining data.

2I use a 25-dimensional version of the standard released word vectors which was provided to us
directly by the authors.

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 53

Portion of NN NTN MFC
training data w/ GloVe w/o GloVe w/ GloVe w/o GloVe

100% 99.73 (0.04) 99.37† (0.14) 99.61 (0.02) 99.95 (0.03) 37.05
33% 95.96 (0.20) 95.30 (0.12) 95.83 (0.35) 95.45† (0.31) 37.05
11% 91.11 (0.24) 90.81† (0.20) 91.27 (0.27) 90.90† (0.13) 37.05

Table 3.5: Mean test % accuracy scores (with standard error) on the WordNet data
over five-fold crossvalidation. MFC denotes the frequency of the most frequent class
(hypernym) as a baseline.

Results

The results are shown in Table 3.5. The structured WordNet data contains substan-

tially more redundancy than the random artificial data above, and I find that the

NTN performs perfectly with random initialization. The plain NN performs almost

as well, providing a point of contrast with the results of Section 3.3.1. I also find

that initialization with GloVe is only marginally helpful, and only shows a detectable

impact on performance with smaller amounts of training data, suggesting that the

information in these vectors is neither necessary nor su�cient for the modeling of lex-

ical relations in a fully supervised setting like this one. GloVe may be more helpful,

though, in more naturalistic settings in which many words are seen rarely or not at

all at training time, but are needed at test time.

Some of the randomly initialized model runs failed to learn usable representations

at all and labeled all examples with the most frequent labels. I excluded these runs

from the statistics, but marked settings for which this occurred with the symbol †.
For all of the remaining runs, training accuracy was consistently above 99%.

3.3.3 Discussion

In this section, I evaluate two neural models on the task of learning natural logic rela-

tions between distributed word representations. The results suggest that at least the

neural tensor network has the capacity to meet this challenge with reasonably-sized

training sets, learning both to embed a vocabulary in a way that encodes a diverse

set of relations, and to subsequently use those embeddings to infer new relations. In

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 54

the remainder of this chapter, I extend these results to include complex expressions

involving logical connectives and quantifiers, with similar conclusions about (tree-

structured recursive versions of) these models.

3.4 Reasoning over recursive structure

A successful natural language inference system must reason about relations not just

over familiar atomic symbols, but also over novel structures built up recursively from

these symbols. This section shows that recursive models can learn a compositional

semantics over such structures. I focus my evaluation of these models on an infinite

logical language, which makes it possible to test the model on strings that are longer

and more complex than any seen in training.

3.4.1 Experiments

As in Section 3.3.1, I generate artificial data from a formal system, but I now replace

the unanalyzed symbols from that experiment with complex formulae. These formu-

lae represent a complete classical propositional logic: each atomic symbol is a variable

over the domain {T, F}, and the only operators are truth-functional ones. Table 3.6

defines this logic, and Table 3.7 gives some short examples of relational statements

from this data. To compute the relations between statements, I exhaustively enumer-

ate the sets of assignments of truth values to propositional variables that would satisfy

each of the statements, and then I convert the set-theoretic relation between those

assignments into one of the seven relations in Table 2.1. As a result, each relational

statement represents a valid theorem of the propositional logic, so to succeed, the

models must learn a function that identifies valid theorems over this small domain.

Socher et al. (2012) show that a matrix-vector TreeRNN model somewhat similar

to the TreeRNTN seen here can learn boolean logic, a logic where the atomic symbols

are simply the values T and F. While learning the operators of that logic is not trivial,

the outputs of each operator can be represented accurately by a single bit. In the

much more demanding task presented here, the atomic symbols are variables over

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 55

Formula Interpretation

p
1

, p
2

, p
3

, p
4

, p
5

, p
6

JxK 2 {T, F}
not ' T i↵ J'K = F

(' and) T i↵ F /2 {J'K, J K}
(' or) T i↵ T 2 {J'K, J K}

Table 3.6: Well-formed formulae. ' and range over all well-formed formulae, and
J·K is the interpretation function mapping formulae into {T, F}.

not p

3

^
p

3

p

3

< p

3

or p

2

(not p
2

) and p
6

| not (p
6

or (p
5

or p

3

))
p

4

or (not ((p
1

or p

6

) or p
4

)) < not ((((not p
6

) or (not p
4

)) and (not p
5

)) and (p
6

and p

6

))

Table 3.7: Short examples of the type of statements used for training and testing.
These are relations between well-formed formulae, computed in terms of sets of sat-
isfying interpretation functions J·K. Parentheses are used here to disambiguate scope,
but examples are supplied to the models as full binary parse trees, and do not include
explicit parentheses.

these values, and the sentence vectors must thus be able to distinguish up to 22
6

distinct conditions on valuations.

For these experiments, I randomly generate unique pairs of formulae containing up

to 12 tokens of the logical operators (and, or, not) each and compute the relation that

holds for each pair. I discard pairs in which either statement is either a tautology or a

contradiction (true for all interpretation functions or for no interpretation functions),

which are outside the scope of the MacCartney-style natural logic on which I am

training these models. The resulting set of formula pairs is then partitioned into 12

bins according the number of operators in the larger of the two formulae. I finally

sample 20% of each bin for a held-out test set.

If no constraint is imposed that requires that the two statements being compared

are similar in any way, then the generated data are dominated by statements in which

the two formulae refer to largely separate subsets of the six variables, which means

that the # relation is almost always correct. In an e↵ort to balance the distribution

of relation labels without departing from the basic task of modeling propositional

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 56

logic, I disallow individual pairs of statements from referring to more than four of the

six propositional variables.

In order to test the model’s generalization to unseen structures, I discard training

examples with more than 4 logical operators, yielding 60K short training examples,

and 21K test examples across all 12 bins. I train TreeRNN models of both types as

well as the sum-of-words (SumNN) baseline. Unlike the two tree models, the baseline

does not use word order, and is as such guaranteed to ignore some information that

it would need in order to succeed perfectly.

More than the other two experiments in this chapter, this experiment directly tests

the ability of the tree-structured models under study to learn the kinds of infinitely

recursive compositional grammars that they were designed around. Because of this,

it would be especially valuable to use a simpler sequence-based model as a baseline in

order to discover whether a given model’s success at this task is due specifically to its

use of tree structures that provide valuable information about the input expressions,

or to some more general property that would apply to neural networks with di↵erently

structured composition techniques. There are substantial complications to setting up

this comparison e↵ectively, and I defer it to Chapter 4 for more extensive coverage.

3.4.2 Results

Figure 3.3 shows the relationship between test accuracy and statement size. While

the summing baseline model performed poorly across the board, both tree-structured

models were able to perform well on unseen small test examples, with TreeRNN

accuracy above 98% and TreeRNTN accuracy above 99% on formulae below length

five, indicating that they learned correct approximations of the underlying logic.

Training accuracy was 66.6% for the SumNN, 99.4% for the TreeRNN, and 99.8% for

the TreeRNTN.

After the size four training cuto↵, performance gradually decays with expression

size for both tree models, suggesting that the learned approximations were accurate

but lossy. Despite the TreeRNTN’s stronger performance on short sentences, its

performance decays more quickly than the TreeRNN’s. This suggests that it learns

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 57

1 2 3 4 5 6 7 8 9 10 11 12
40%

50%

60%

70%

80%

90%

100%

Test Set Bin

A
cc
u
ra
cy

45D TreeRNN
25D TreeRNTN
45D SumNN

only

Figure 3.3: Results on recursive structure. The horizontal axis divides the test set
into bins by the number of logical connectives in each sentence, and the vertical axis
reflects test accuracy. The vertical dotted line marks the size of the longest training
examples. # only reflects the performance that can be reached by always guessing
#, the most frequent relation.

to interpret many specific fixed-size tree structures directly, allowing it to get away

without learning as robust generalizations about how to compose terms in the general

case. Two factors may make the TreeRNTN prone to learning these more complex

generalizations: even with the lower dimension, the TreeRNTN composition function

has about eight times as many parameters as the TreeRNN, and the TreeRNTN

works best with weaker L2 regularization than the TreeRNN (� = 0.0003 vs. 0.001).

However, even in the most complex set of test examples, the TreeRNTN classifies

true examples of every class but ⌘ (which is rare in long examples, and occurs only

once here) correctly the majority of the time, and the performance of both models on

those examples indicates that both learn reasonable approximations of the underlying

logical reasoning task over recursive structure.

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 58

3.5 Reasoning with quantifiers and negation

We have seen that tree-structured models can learn to represent and reason with short

expressions of propositional logic. However, natural languages can express functional

meanings of considerably greater complexity than this. As a test of whether these

models can capture this complexity, I now investigate the degree to which they are able

to develop suitable representations for the semantics of natural language quantifiers

like most and all as they interact with negation and lexical entailments. Quantifi-

cation and negation are far from the only place in natural language where complex

functional meanings are found, but they are natural focus, since they have formed a

standard case study in prior formal work on natural language inference (e.g. Icard III

& Moss 2013b).

3.5.1 Experiments

The data consist of pairs of sentences generated from a grammar for a simple English-

like artificial language. Each sentence contains a quantifier, a noun which may be

negated, and an intransitive verb which may be negated. I use the quantifiers some,

most, all, two, and three, and their negations no, not-all, not-most, less-than-two, and

less-than-three, and also include five nouns, four intransitive verbs, and the negation

symbol not. In order to be able to define relations between sentences with di↵ering

lexical items, I define the lexical relations for each noun–noun pair, each verb–verb

pair, and each quantifier–quantifier pair. The grammar then generates pairs of sen-

tences and calculates the relations between them.3 For instance, the models might

then see pairs like 3.2 and 3.3 in training and be required to then label 3.4.

(3.2) (most turtle) swim | (no turtle) move

(3.3) (all lizard) reptile < (some lizard) animal

3The relations are assigned by a task-specific implementation of MacCartney and Manning’s
logic. This logic is sound, but it is not complete even over this small fixed fragment of English, and
there are some generated pairs to which the logic does not assign a relation label. These include
those that require inferences based on De Morgan’s laws, such as (all pets) growl

^
(some pet) (not

growl). Pairs which are not assigned labels are omitted from the corpus.

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 59

Train Test

only 35.4 (7.5) 35.4 (7.5)
25D SumNN 96.9 (97.7) 93.9 (95.0)
25D TreeRNN 99.6 (99.6) 99.2 (99.3)
25D TreeRNTN 100 (100) 99.7 (99.5)

Table 3.8: Performance on the quantifier experiments, given as % correct and
macroaveraged F1.

(3.4) (most turtle) reptile | (all turtle) (not animal)

In each run, I randomly partition the set of valid single sentences into train and

test, and then label all of the pairs from within each set to generate a training set of

27K pairs and a test set of 7K pairs. Because the model doesn’t see the test sentences

at training time, it cannot directly use the kind of reasoning described in Section 3.3

at the sentence level (by treating sentences as unanalyzed symbols), and must instead

jointly learn the word-level relations and a complete reasoning system over them for

the logic.

I use the same summing baseline as in Section 3.4. The highly consistent sen-

tence structure in this experiment means that this model is not as disadvantaged

by the lack of word order information as it is in the previous experiment, but the

variable placement of not nonetheless introduces potential uncertainty in the 58.8%

of examples that contain a sentence with a single token of it.

3.5.2 Results

The results (Table 3.8) show that both tree models are able to learn to generalize the

underlying logic almost perfectly. The baseline summing model can largely memorize

the training data, but does not generalize as well. I do not find any consistent pattern

in the handful of errors made by either tree model, and no errors were consistent across

model restarts, suggesting that there is no fundamental obstacle to learning a perfect

model for this problem.

CHAPTER 3. LOGICAL REASONING IN TREE-STRUCTURED MODELS 60

3.6 Discussion and conclusion

This chapter evaluates two tree-structured recursive neural network models on four

inference tasks over clean data, covering the core capacities of natural logic with

entailment and exclusion, recursive structure, and quantification. The results suggest

that TreeRNTNs, and potentially also TreeRNNs, can learn to faithfully reproduce

logical inference behaviors from reasonably-sized training sets. These positive results

are promising for the future of learned representation models in the applied modeling

of compositional semantics.

Some questions about the abilities of these models remain open. Even the Tree-

RNTN falls short of perfection in the recursion experiment, with performance falling

o↵ steadily as the size of the expressions grows. It remains to be seen whether

these deficiencies are limiting in practice, and whether they can be overcome with

stronger models or better optimization techniques. In addition, interesting analyti-

cal questions remain about the particular type and structure of the internal vector

representations that these models use to encode logical primitives and composed ex-

pressions. Neither the underlying logical theories nor any straightforward parameter

inspection technique provides much insight on this point, but further research may

reveal structure in the learned parameters or the representations they produce.

The next chapter explores the degree to which simpler recurrent neural network

models (RNNs) can show some of these same symbolic reasoning abilities, and finds

that they are substantially less e�cient learners in this setting. Following that, the

remainder of this dissertation shows that both recurrent and recursive models are

e↵ective at learning from real natural language data, and that a novel model that

serves as a hybrid between the two is even more e↵ective.

Chapter 4

Logical reasoning in sequence

models

This chapter presents work that was published as Bowman, Manning & Potts (2015b).

My only coauthors on this paper were my advisors, who were primarily involved in an

advisory role rather than in a direct collaboration.

4.1 Introduction

While both tree and sequence-based sentence-encoding models perform well on many

tasks, and both are under active development, tree models are often presented as the

more principled choice, since they align with standard linguistic assumptions about

constituent structure and the compositional derivation of complex meanings. Never-

theless, tree models have not shown the kinds of dramatic performance improvements

over sequence models that their billing would lead one to expect: head-to-head com-

parisons with sequence models show either modest improvements (Tai et al. 2015) or

none at all (Li et al. 2015).

In this chapter, I investigate a hypothesis that could explain these results: stan-

dard sequence models may be able to learn to exploit recursive syntactic structure

in generating representations of sentence meaning, thereby covertly using the same

structure that tree models are explicitly designed around. This would require that

61

CHAPTER 4. LOGICAL REASONING IN SEQUENCE MODELS 62

sequence models be able to identify syntactic structure in natural language. This

appears to be plausible on the basis of other recent research (Vinyals et al. 2015,

Karpathy et al. 2015). In this chapter, I use experiments based on those in the previ-

ous chapter to evaluate whether LSTM sequence models are able to use such structure

to guide interpretation, focusing on cases where syntactic structure is clearly indicated

in the data.

I compare standard tree and sequence models on their handling of recursive struc-

ture by training the models on sentences whose length and recursion depth are limited,

and then testing them on longer and more complex sentences, such that only models

that exploit the recursive structure will be able to generalize in a way that yields

correct interpretations for these test sentences. The methods extend those of Sec-

tion 3.4, which introduces an experiment and corresponding artificial dataset to test

this ability in two tree models. I adapt that experiment to sequence models by dec-

orating the statements with an explicit bracketing, and I use this design to compare

an LSTM sequence model with three tree models, with a focus on what data each

model needs in order to generalize well.

Building on the results in Section 3.4, I first show that standard tree neural net-

works are able to make the necessary generalizations, with their performance decaying

gradually as the structures in the test set grow in size. I additionally find that extend-

ing the training set to include larger structures mitigates this decay. Then considering

sequence models, I find that a single-layer LSTM RNN can also generalize to unseen

large structures to some extent, but that it does this only when trained on a much

larger and more complex training set than is needed by the tree models to reach the

same generalization performance.

These results engage with those of Vinyals et al. (2015) and Dyer et al. (2015),

who find that sequence models can learn to extract syntactic structure from natural

language sentences, at least when trained on explicitly syntactic tasks. The simplest

model presented in Vinyals et al. (2015) uses an LSTM sequence model to encode each

sentence as a vector, and then generates a linearized parse (a sequence of brackets

and constituent labels) with high accuracy using only the information present in the

vector. This shows that the LSTM is able to identify the correct syntactic structures

CHAPTER 4. LOGICAL REASONING IN SEQUENCE MODELS 63

not p

3

^
p

3

p

3

< p

3

or p

2

(not p
2

) and p
6

| not (p
6

or (p
5

or p

3

))
p

4

or (not ((p
1

or p

6

) or p
4

)) < not ((((not p
6

) or (not p
4

)) and (not p
5

)) and (p
6

and p

6

))

Table 4.1: Examples of short to moderate length pairs from the artificial data intro-
duced in Chapter 3. I only show the parentheses that are needed to disambiguate the
sentences rather than the full binary bracketings that the models use.

and also hints that it is able to develop a generalizable method for encoding these

structures in vectors.

The experiments in this chapter show that LSTM sequence models can learn to

understand tree structures in a generalizable way when given enough data. I also

find, though, that sequence models lag behind tree models dramatically across the

board, even on training corpora that are quite large relative to the complexity of the

underlying grammar, suggesting that tree models can play a valuable role in modeling

natural language understanding.

4.2 Recursive structure in artificial data

The artificial language The language described in Section 3.4, which I use here, is

designed to highlight the use of recursive structure with minimal additional complex-

ity. Its vocabulary consists only of six unanalyzed word types (p
1

, p
2

, p
3

, p
4

, p
5

, p
6

),

and, or, and not. Sentences of the language can be straightforwardly interpreted as

statements of propositional logic (where the six unanalyzed words types are variable

names), and labeled sentence pairs can be interpreted as theorems of that logic. Some

example pairs are provided in Table 4.1.

Crucially, the language is defined such that any sentence can be embedded un-

der negation or conjunction to create a new sentence, allowing for arbitrary-depth

recursion, and such that the scope of negation and conjunction are determined only

by bracketing with parentheses (rather than bare word order). The compositional

structure of each sentence can thus be an arbitrary tree, and interpreting a sentence

correctly requires using that structure.

CHAPTER 4. LOGICAL REASONING IN SEQUENCE MODELS 64

The data come with parentheses representing a complete binary bracketing. The

models use this information in two ways. For the tree models, the parentheses are

not word tokens, but rather are used in the expected way to build the tree. For the

sequence model, the parentheses are word tokens with associated learned embeddings.

This approach provides the models with equivalent data, so their ability to handle

unseen structures can be reasonably compared.

The data The sentence pairs are divided into thirteen bins according to the number

of logical connectives (and, or, not) in the longer of the two sentences in each pair.

I test each model on each bin separately (58K total examples, using an 80/20%

train/test split) in order to evaluate how each model’s performance depends on the

complexity of the sentences. In four experiments, I train the models on the training

portions of bins 0–3 (62K examples), 0–4 (90K), 0–6 (160K), and 0–10 (230K), and

test on every bin but the trivial bin 0. Capping the size of the training sentences allows

us to evaluate how the models interpret the sentences: if a model’s performance falls

o↵ abruptly above the cuto↵, it is reasonable to conclude that it relies heavily on

specific sentence structures and cannot generalize to new structures. If a model’s

performance decays gradually with no such abrupt change, then it must have learned

a more generally valid interpretation function for the language which respects its

recursive structure.

When evaluating any sentence-encoding model on sentences longer than those

seen at training time, it is inevitable to see at least some decay in accuracy—this

experiment only attempts to compare the magnitude of this decay across models.

Since sentences are fixed-dimensional vectors of fixed-precision floating point numbers,

all models will make errors on sentences above some length, and L2 regularization

(which empirically helps performance by preventing the model from overfitting on

the finite training data) exacerbates this by discouraging the model from using the

kind of numerically precise, nonlinearity-saturating functions that would ultimately

generalize best.

CHAPTER 4. LOGICAL REASONING IN SEQUENCE MODELS 65

4.3 Testing sentence models on entailment

I use the architecture depicted in Figure 4.1a, which builds on the one used in Chap-

ter 3. The model architecture uses two copies of a single sentence model (a tree or

sequence model) to encode the premise and hypothesis (left and right side) expres-

sions, and then uses those encodings as the features for a multilayer classifier which

predicts one of the seven relations. Since the encodings are computed separately, the

sentence models must encode complete representations of the meanings of the two

sentences if the downstream model is to succeed.

Two points must be considered when comparing tree-structured models to re-

current ones. Most importantly, the two do not take the same structures as input:

tree-structured models must be provided with a parse structure, which is generally

not provided when using sequence models. In order to ensure that any performance

di↵erence between the two approaches is not strictly due to this di↵erence in available

information, it is necessary to experiment with sequence models that have access to

linearized parse structure information. Here, this takes the form of explicit open- and

close-bracket tokens. In addition, it is important to distinguish between di↵erences

in model structure and di↵erences in layer function. While the relatively weak plain

RNNs and plain TreeRNNs use essentially the same layer function, the more e↵ec-

tive LSTMs, TreeLSTMs, and TreeRNTNs use distinctive layer functions that are

to some extent entangled with specific network architectures, such that the choice of

architecture and the choice of layer function are tied.

Classifier The classifier component of the model consists of a combining layer which

takes the two sentence representations as inputs, followed by two neural network

layers, then a softmax classifier.

This model is largely identical to the model from Chapter 3, but adds the two

additional tanh NN layers, which I found help performance across the board, and also

uses the NTN combination layer when evaluating all four models, rather than just

the TreeRNTN model, so as to ensure that the sentence models are compared in as

similar a setting as possible.

CHAPTER 4. LOGICAL REASONING IN SEQUENCE MODELS 66

7-way softmax classifier

100D tanh NN layer

100D tanh NN layer

100D tanh NTN layer

50D premise 50D hypothesis

sentence model
with premise input

sentence model
with hypothesis input

(a) The general architecture shared across models.

...

a or b

or b

bor

a

(b) The architecture for the tree-
structured sentence models. Terminal
nodes are learned embeddings and non-
terminal nodes are NN, NTN, or Tree-
LSTM layers.

a

a

or

a or

b

a or b ...

(c) The architecture for the sequence sen-
tence model. Nodes in the lower row are
learned embeddings and nodes in the up-
per row are LSTM layers.

Figure 4.1: In this model, which follows the basic structure introduced in Figure 2.3,
two copies of a sentence model—based on either tree (b) or sequence (c) models—
encode the two input sentences. A multilayer classifier component (a) then uses the
resulting vectors to predict a label that reflects the logical relationship between the
two sentences.

CHAPTER 4. LOGICAL REASONING IN SEQUENCE MODELS 67

Sentence models The sentence-encoding component of the model transforms the

(learned) embeddings of the input words for each sentence into a single vector repre-

senting that sentence. I experiment with tree-structured models (Figure 4.1b) with

TreeRNN (2.8), TreeRNTN (2.9), and TreeLSTM (2.10–2.12) activation functions.

In addition, I use a sequence model (Figure 4.1c) with an LSTM activation function

(2.5–2.7). In experiments with a simpler non-LSTM RNN sequence model (2.4), the

model tended to badly underfit the training data, and those results are not included

here.

Initialization All parameters are initialized with samples from a uniform distri-

bution, using a strategy that roughly follows Glorot & Bengio (2010). For most

matrix-valued parameters, this distribution is over ± 1p
Din

, where D
in

is the combined

dimensions of the inputs to the relevant layer. For the RNTN layer, the matrix pa-

rameter is initialized in ± 0.1p
Din

and the tensor parameter is initialized in ± 0.9p
Din

. All

bias vectors are initialized to zero.

Training I train all four models using minibatch SGD with AdaDelta (Zeiler 2012)

learning rates. The objective is the standard negative log likelihood classification

objective with L2 regularization. The regularization constant � was tuned manually

on a separate train-test split, and was set to 1⇥ 10�4 for the plain TreeRNN and 3⇥
10�4 for the other three models. All models are trained for 100 epochs, after which all

have largely converged without significantly declining from their peak performances.

4.4 Results and discussion

The results are shown in Figure 4.2. The tree models fit the training data well,

reaching 99.2, 99.0, and 98.8% overall accuracy respectively in the 6 setting, with

the LSTM underfitting at 94.2%. In that setting, all models generalized well to

relatively short test examples, with the tree models all surpassing 98% on examples

in bin 4, and the LSTM reaching 95.6%. On longer test sentences, including those

before the training cuto↵, the tree models decay smoothly in performance across the

CHAPTER 4. LOGICAL REASONING IN SEQUENCE MODELS 68

40%

50%

60%

70%

80%

90%

100%

A
cc
u
ra
cy

1 2 3 4 5 6 7 8 9 10 11 12
40%

50%

60%

70%

80%

90%

100%

Test Set Bin

A
cc
u
ra
cy

1 2 3 4 5 6 7 8 9 10 11 12

Test Set Bin

50D TreeRNN 50D TreeRNTN 50D TreeLSTM 50D LSTM

Figure 4.2: Test accuracy on four experiments using bins 0–3, 0–4, 0–6, and 0–10 for
training. The horizontal axis on each graph divides the test set expression pairs into
bins by the number of logical operators in the more complex of the two expressions
in the pair. The dashed line shows the size of the largest examples in the training set
in each experiment.

CHAPTER 4. LOGICAL REASONING IN SEQUENCE MODELS 69

0% 20% 40% 60% 80% 100%
40%

50%

60%

70%

80%

90%

100%

Portion of Training Set Seen

A
cc
u
ra
cy

TreeRNN
TreeRNTN
TreeLSTM
LSTM

Figure 4.3: Learning curve for the 6 experiment.

board, while the LSTM decays more quickly and much more abruptly, with a striking

di↵erence in the 4 setting, where LSTM performance falls about 10% from bin 4

to bin 5, compared to 3% for the next worse model. However, the LSTM improves

considerably with more ample training data in the 6 setting, showing only a 3%

drop and generalization results comparable to the best model’s in the 3 setting. In

the 10 setting, the LSTM improves further, roughly matching the performance of

the best model in the dramatically harder 4 setting.

All four models robustly beat the simple baselines reported in Figure 3.3.

The learning curve (Figure 4.3) suggests that additional data is unlikely to change

these basic results. The LSTM lags behind the tree models by a substantial margin

across the curve, but appears to gain accuracy at a similar rate.

CHAPTER 4. LOGICAL REASONING IN SEQUENCE MODELS 70

4.5 Conclusion

I find that all four models are able to learn to reason over novel sentences of a

recursive language to some extent. Further, I find that tree models’ biases allow

them to do this with much greater e�ciency, outperforming sequence-based models

substantially in every experiment. However, the sequence model is nonetheless able

to generalize smoothly from seen sentence structures to unseen ones, showing that its

lack of explicit recursive structure does not categorically prevent it from recognizing

recursive structure in the artificial language.

I interpret these results as evidence that both tree and sequence architectures

can play valuable roles in the construction of sentence models over data with re-

cursive syntactic structure. Tree architectures provide an explicit bias that makes

it possible to e�ciently learn to compositional interpretation, which is di�cult for

sequence models. Sequence models, on the other hand, lack this bias, but have other

advantages. Since they use a consistent graph structure across examples, it is easy

to accelerate minibatch training in ways that yield substantially faster training times

than are possible with tree models, especially with GPUs. In addition, when sequence

models integrate each word into a partial sentence representation, they have access to

the entire sentence representation up to that point, which may provide valuable cues

for the resolution of lexical ambiguity, which is not present in the artificial language,

but is a serious concern in natural language text.

Finally, I suggest that, because of the well-supported linguistic claim that the kind

of recursive structure that I study here is key to the understanding of real natural

languages, there is likely to be value in developing sequence models that can more

e�ciently exploit this structure without fully sacrificing the flexibility that makes

them succeed. The remainder of the dissertation works towards this hypothesis.

After Chapters 5 and 6 introduce the necessary data, Chapter 7 introduces a novel

model that builds on the strengths of both tree and sequence models, and shows that

this new hybrid model is a fast and uniquely e↵ective sentence encoder.

Chapter 5

A new corpus for NLI

This chapter presents work that was published as Bowman, Angeli, Potts & Manning

(2015a). I was primarily responsible for the design and creation of the corpus de-

scribed in this paper, though Gabor Angeli was an active collaborator throughout its

development. The other two co-authors, my advisors, contributed to this paper pri-

marily in an advisory role. In addition, Section 5.2 in this chapter presents work that

is excerpted from Bowman, Potts & Manning (2015d), which also forms the basis for

much of Chapter 3. That work is my own. Finally, Section 5.4 was composed for this

dissertation and is entirely my own.

5.1 Introduction

My objective in this dissertation is to provide an empirical evaluation of representation

learning approaches to NLI and to advance the case for NLI as a tool for the evaluation

of domain-general approaches to semantic representation. The experiments presented

so far in Chapters 3 and 4 have done this using experiments over artificial data, an

approach which is informative, but which cannot satisfy this objective alone. In this

chapter, I move to the use of natural language. While in previous chapters, it was

possible to create valid inference data by simulating the behaviors of sound logics,

this option is unavailable here.

Existing NLI corpora do not permit the thorough assessment of low-bias machine

71

CHAPTER 5. A NEW CORPUS FOR NLI 72

A man inspects the uniform of a fig-
ure in some East Asian country.

contradiction

c c c c c
The man is sleeping

An older and younger man smiling. neutral

n n e n n
Two men are smiling and laughing at
the cats playing on the floor.

A black race car starts up in front of
a crowd of people.

contradiction

c c c c c
A man is driving down a lonely road.

A soccer game with multiple males
playing.

entailment

e e e e e
Some men are playing a sport.

A smiling costumed woman is hold-
ing an umbrella.

neutral

n n e c n
A happy woman in a fairy costume
holds an umbrella.

Table 5.1: Randomly chosen examples from the development section of the new cor-
pus, shown with both the selected gold labels and the full set of labels (abbreviated)
from the individual annotators, including (in the first position) the label used by the
initial author of the pair.

learning models like neural networks. With only hundreds or thousands of training

examples, these corpora are generally too small for training low-bias models like neural

networks. In addition, many contain sentences that are algorithmically generated,

and many su↵er from issues of inconsistent handling of event and entity coreference

in labeling, both of which significantly impact the interpretability of any results.

To address this, this chapter presents the Stanford Natural Language Inference

(SNLI) corpus, a collection of sentence pairs labeled for entailment, contradiction, and

semantic independence. At 570,152 sentence pairs, SNLI is two orders of magnitude

larger than all other resources of its type. And, in contrast to many such resources,

all of its sentences and labels were written by humans in a grounded, naturalistic

context. In a separate validation phase, we collected four additional judgments for

each label for 56,941 of the examples. Of these, 98% of cases emerge with a three-

annotator consensus, and 58% see a unanimous consensus from all five annotators.

Table 5.1 shows a few examples.

5.1.1 Why not some other task?

There is a sound intellectual case to be made for NLI as an evaluation task (advanced

in Chapter 1), but since the collection of a new corpus is a large and expensive

CHAPTER 5. A NEW CORPUS FOR NLI 73

endeavor, it is worth pausing here to consider alternative tasks for which high-quality

corpora are already available.

The task of machine translation can also be used to train and evaluate neural

network sentence encoders, and that task also demands some degree of sensitivity to

compositional syntactic and semantic structure. In a practical sense, translation is

the more appealing task, since translation data is generated in the course of business

for many organizations, leaving a great deal of data available. I argue, though, that

NLI is the better benchmark for developing NNs for language understanding. This is

for two reasons:

• Typical translation tasks require natural language generation, which is a sepa-

rate di�cult problem that must be learned in parallel with the semantic encod-

ing task of interest, making results harder to interpret. For NLI, the only tool

that is needed beyond the sentence encoder is a well-understood conventional

classifier.

• Contradiction vs. entailment decisions in particular specifically target the abili-

ties of NN models to learn lexical and phrasal representations (like alternation)

that don’t resemble similarity, either in their correlation with distributional in-

formation or their transitivity behavior. There is no close parallel to this in

machine translation. Since modeling similarity is almost the only aspect of

NN behavior in NLP that’s reasonably well understood and essentially known

to work, using a benchmark that explicitly demands something more sophisti-

cated than this is likely to pay o↵ by better exposing the weaknesses of current

standard models.

Sentiment evaluation has also been used in recent work to evaluate sentence-

encoding models, and online review sites provide an easy way to collect naturally-

occurring sentiment data, making sentiment another practical alternative to inference.

However, sentiment analysis evaluates only one narrow aspect of language meaning,

rather than the broad spectrum of phenomena that an NLI system must understand

in order to succeed.

CHAPTER 5. A NEW CORPUS FOR NLI 74

In addition, several question-answering-based tasks have been used to evaluate

neural networks in the recent literature (Iyyer et al. 2014, Bordes et al. 2016). For

a model to succeed at almost any version of the question-answering task, it needs

to show sophisticated language understanding. However, existing question-answering

task definitions and datasets reliably present models with substantial additional chal-

lenges that can mask their performance at understanding, including the challenges of

e�ciently searching through large knowledge sources, integrating potentially conflict-

ing sources of information, and phrasing answers.

5.1.2 Corpora in semantics

Beyond evaluating neural network models, there is also a second reason to pursue

the creation of a large human-annotated NLI corpus. Corpus methods on such a

dataset have the potential to o↵er a range of fast reproducible experimental designs

to researchers in semantics. These methods have so far been limited by a lack of

large corpora with any kind of semantic grounding. Because of this, it has only been

possible to use corpus methods to study the usage and distribution of constructions

with known semantics rather than to study the semantics of novel constructions

directly.

An ideal corpus for truth-conditional semantics (as discussed in Section 1.1.1)

would pair utterances in context with either a truth value or, even better, a set

of truth conditions expressed in a logical form of some kind. Doing this requires

specifying a representational system to describe the contexts of utterances, and in

the latter case, the contents of those utterances as well. How best to represent this

kind of information, though, is very much an open problem, and in fact it is the very

problem that such a corpus would be meant to help solve.

Creating a natural language inference corpus instead makes it possible to collect

a representation-agnostic corpus. In this framing, natural language is treated as its

own representation language, and the semantic annotation for a sentence consists

simply of examples of sentences with respect to which it is entailing, contradictory, or

semantically neutral. High quality corpora of this kind like RTE and SICK exist, but

CHAPTER 5. A NEW CORPUS FOR NLI 75

at a few thousand examples they have so far been too small for corpus methods to

o↵er much insight, and the fact that they were constructed using detailed annotation

guidelines limits their value as examples of real human language use.

Crucially, as I discussed in Section 1.1.5, even semantic theories built up entirely

around model-theoretic representations make clear, testable predictions about entail-

ments. I hope that SNLI will make it possible to quantitatively evaluate semantic

theories that bear on phenomena found in captions, and that it will pave the way for

informative corpus semantic work on future corpora.

5.2 Training neural networks with existing data

In this section, we investigate what can be accomplished in NLI using neural net-

works over existing training data. While none of the existing datasets discussed in

Section 2.1.3 is ideal for neural network training, the SICK entailment corpus’s 4500

training examples may be large enough to support at least some limited learning.

The model that we use for this experiment is based on the one used in Chapter 3,

with a few additions. In order to better handle rare words, we initialize the word

embeddings using 200 dimensional vectors trained with GloVe (Pennington et al.

2014) on data from Wikipedia. Since 200 dimensional vectors are too large to be

practical in a TreeRNTN on a small dataset due to the TreeRNTN’s D3-element

tensor parameter, a new embedding transformation layer is needed to make it possible

to scale the embeddings down to a manageable size. Before any embedding is used as

an input to a recursive layer, it is passed through an additional tanh neural network

layer with the same output dimension as the recursive layer. This new layer allows

the model to choose which aspects of the 200 dimensional representations from the

unsupervised source it most values, rather than relying on GloVe—which has no

knowledge of the task—to do so, as would be the case were GloVe asked to directly

produce vectors of the lower dimensionality. An identical layer is added to the sum-

of-words model between the word vectors and the comparison layer.

We also supplement the SICK training data1 (4500 examples) with 600K examples

1We tuned the model using performance on a held out development set, but report performance

CHAPTER 5. A NEW CORPUS FOR NLI 76

The patient is being helped by the
doctor

entailment The doctor is helping the patient
(Passive)

A little girl is playing the violin
on a beach

contradiction There is no girl playing the violin
on a beach (Neg)

The yellow dog is drinking water
from a bottle

contradiction The yellow dog is drinking water
from a pot (Subst)

A woman is breaking two eggs in
a bowl

neutral A man is mixing a few ingredients
in a bowl (MultiEd)

Dough is being spread by a man neutral A woman is slicing meat with a
knife (Diff)

Table 5.2: Examples of each category used in error analysis from the SICK test data.

of approximate entailment data from the Denotation Graph project (DG; Young

et al. 2014), a corpus of noisy automatically labeled entailment examples over image

captions—the same genre of text from which SICK was drawn—which was also used

by the winning SICK submission. We trained a single model on data from both

sources, but used a separate set of softmax parameters for classifying into the labels

from each source, and forced the model to sample SICK examples and DG examples

about equally often during training.

We parse the data from both sources with the Stanford PCFG Parser v. 3.3.1

(Klein & Manning 2003). We also find that training an e↵ective model with such

limited data requires an additional technique: we collapse subtrees that were identical

across both sentences in a pair by replacing them with a single head word. The

training and test data on which we report performance are collapsed in this way,

and both collapsed and uncollapsed copies of the training data are used in training.

Finally, in order to improve regularization on the noisier data, we add tuned dropout

(Srivastava et al. 2014) at the input to the comparison layer (90% keep rate) and at

the output from the embedding transform layer (25% keep rate).

here for a version of the model trained on both the training and development data and tested on the
4,928 example SICK test set. We also report training accuracy on a small sample from each data
source.

CHAPTER 5. A NEW CORPUS FOR NLI 77

neutral only 30D SumNN 30D TreeRNN 50D TreeRNTN

DG Train 50.0 68.0 67.0 74.0

SICK Train 56.7 96.6 95.4 97.8

SICK Test 56.7 73.4 74.9 76.9

Passive (4%) 0 76 68 88

Neg (7%) 0 96 100 100

Subst (24%) 28 72 64 72

MultiEd (39%) 68 61 66 64
Diff (26%) 96 68 79 96

Short (47%) 50.0 73.9 73.5 77.3

Table 5.3: Classification accuracy, including a category breakdown for SICK test
data. Categories are shown with their frequencies.

5.2.1 Results

Despite the small amount of high quality training data available and the lack of

resources for learning lexical relationships, the results (Table 5.3) show that the tree-

structured models perform competitively on textual entailment, beating a strong base-

line. Neither model reaches the performance of the winning system in the SemEval

competition (84.6%), but the TreeRNTN did exceed that of eight out of 18 submit-

ted systems, including several which used sophisticated hand-engineered features and

lexical resources specific to the version of the entailment task at hand.

To better understand the results, I manually annotated a fraction of the SICK test

set, using mutually exclusive categories for passive/active alternation pairs (Passive),

pairs di↵ering only by the presence of negation (Neg), pairs di↵ering by a single word

or phrase substitution (Subst), pairs di↵ering by multiple edits (MultiEd), and

pairs with little or no content word overlap (Diff). Examples of each are in Table

5.2. We annotated 100 random examples to judge the frequency of each category,

and continued selectively annotating until each category contained at least 25. I also

use the category Short for pairs in which neither sentence contains more than ten

words.

The results (Table 5.3) show that the TreeRNTN performs especially strongly

in the two categories which pick out specific syntactic configurations, Passive and

CHAPTER 5. A NEW CORPUS FOR NLI 78

Neg, suggesting that that model has learned to encode the relevant structures well.

It also performs fairly on Subst, which most closely parallels the lexical entailment

inferences addressed in Section 3.5. In addition, none of the models perform dramat-

ically better on the Short pairs than on the rest of the data, suggesting that the

performance decay observed in Chapter 4 may not impact models trained on typical

natural language text, or that short sentences in this corpus tend to be more di�cult,

possibly because they lack useful information that would be spelled out in longer

sentences.

It is known that a model can perform well on SICK (like other natural language

inference corpora) without taking advantage of compositional syntactic or semantic

structure (Marelli et al. 2014a), and the summing baseline model is powerful enough

to do this. The tree models nonetheless perform substantially better, suggesting that

given su�cient data it should be possible for the tree models, and not the summing

model, to learn a truly high-quality solution, a possibility that I explore in Chapter 7.

5.3 A new corpus for NLI

5.3.1 Formulating a task definition

Existing resources su↵er from a subtler issue that impacts even projects using only

human-provided annotations: indeterminacies of event and entity coreference lead

to insurmountable indeterminacy concerning the correct semantic label (de Marne↵e

et al. 2008, Marelli et al. 2014b). For an example of the pitfalls surrounding entity

coreference, consider the sentence pair

(5.1) Premise: A boat sank in the Pacific Ocean

Hypothesis: A boat sank in the Atlantic Ocean

The pair could be labeled contradiction if one assumes that the two sentences

refer to the same single event, but could also be reasonably labeled neutral if that

assumption is not made. In order to ensure that the labeling scheme assigns a single

correct label to every pair, it is necessary to select one of these approaches across the

CHAPTER 5. A NEW CORPUS FOR NLI 79

board, but both choices present problems. If we opt not to assume that events are

coreferent, then we will only ever find contradictions between sentences that make

broad universal assertions, but if we opt to assume coreference, new counterintuitive

predictions emerge. For example, the below pair would unintuitively be labeled con-

tradiction, rather than neutral, under this assumption, since the two sentences

can’t plausibly describe the same event.

(5.2) Premise: Ruth Bader Ginsburg was appointed to the US Supreme Court.

Hypothesis: I had a sandwich for lunch today.

Entity coreference presents a similar kind of indeterminacy, as in the following pair.

(5.3) Premise: A tourist visited New York.

Hypothesis: A tourist visited the city.

Assuming coreference between New York and the city justifies labeling the pair

entailment, but without that assumption the city could be taken to refer to a

specific unknown city, leaving the pair neutral. This kind of indeterminacy of label

can be resolved only once the questions of coreference are resolved.

Marelli et al. (2014b) observed a similar issue in constructing SICK and proposed

a solution of roughly the same flavor as the one we propose below.

Not unreasonably, subjects found that, say, A woman is wearing an Egyp-

tian headdress does not contradict A woman is wearing an Indian head-

dress, since one could easily imagine both sentences truthfully uttered to

refer to a single scene where two di↵erent women are wearing di↵erent

headdresses. In the future, a higher proportion of CONTRADICTION

labels could be elicited by using grammatical and possibly visual cues

(pictures) encouraging co-indexing of the entities in the two sentences.

With SNLI, we sought to address the issues of size, quality, and indeterminacy.

To do this, we employed a crowdsourcing framework with the following crucial inno-

vations:

CHAPTER 5. A NEW CORPUS FOR NLI 80

• The examples were grounded in specific scenarios, and the premise and hy-

pothesis sentences in each example were constrained to describe that scenario

from the same perspective, which helps greatly in controlling event and entity

coreference.2

• The prompt gave participants the freedom to produce entirely novel sentences

within the task setting, which led to richer examples than we see with the more

proscribed string-editing techniques of earlier approaches, without sacrificing

consistency.

• A subset of the resulting sentences were sent to a validation task aimed at pro-

viding a highly reliable set of annotations over the same data, and at identifying

areas of inferential uncertainty.

5.3.2 Data collection

We used Amazon Mechanical Turk for data collection. In each individual task (each

HIT, in Amazon’s terms), a worker was presented with premise scene descriptions

from a preexisting corpus, and asked to supply hypotheses for each of the three

labels—entailment, neutral, and contradiction—forcing the data to be bal-

anced among these classes.

The instructions that we provided to the workers are shown in Figure 5.1. Below

the instructions were three fields for each of three requested sentences, corresponding

to the entailment, neutral, and contradiction labels, a fourth field (marked

optional) for reporting problems, and a link to an FAQ page. That FAQ was con-

structed gradually over the course of data collection. It warns about disallowed tech-

niques (e.g. reusing the same sentence for many di↵erent prompts, which we observed

in a few cases), provides guidance concerning sentence length and complexity (we did

not enforce a minimum length, and we allowed bare NPs as well as full sentences),

and reviews logistical issues around payment timing.

2 Issues of coreference are not completely solved, but are greatly mitigated. For example, with
the premise sentence A dog is lying in the grass, a worker could safely assume that the dog is the
most prominent thing in the photo, and very likely the only dog, and build contradicting sentences
assuming reference to the same dog.

CHAPTER 5. A NEW CORPUS FOR NLI 81

We will show you the caption for a photo. We will not show you the photo. Using only
the caption and what you know about the world:

• Write one alternate caption that is definitely a true description of the photo.
Example: For the caption “Two dogs are running through a field.” you could

write “There are animals outdoors.”

• Write one alternate caption that might be a true description of the photo.
Example: For the caption “Two dogs are running through a field.” you could

write “Some puppies are running to catch a stick.”

• Write one alternate caption that is definitely a false description of the photo.
Example: For the caption “Two dogs are running through a field.” you could

write “The pets are sitting on a couch.” This is di↵erent from the maybe correct
category because it’s impossible for the dogs to be both running and sitting.

Figure 5.1: The instructions used on Mechanical Turk for data collection.

About 2,500 workers contributed. We adjusted the compensation strategy several

times, but it averaged about $0.16 per HIT. We could not accurately measure how

long workers took to complete each HIT, but users on Mechanical Turk worker fo-

rums described both the compensation and the task completion experience in reliably

positive terms.

For the premises, we use captions from the Flickr30K corpus (Young et al. 2014),

a collection of approximately 160K captions (corresponding to about 30K images)

collected in an earlier crowdsourced e↵ort.3 The images are sampled from personal

photos posted to the sharing site Flickr, and cover a diverse range of scenes, with an

emphasis on people and outdoor scenes. Figure 5.2 shows two examples. The captions

were not authored by the photographers who took the source images, and they tend

to contain relatively literal scene descriptions that are suited to this approach, rather

than those typically associated with personal photographs (as in their example: Our

trip to the Olympic Peninsula). In order to ensure that the label for each sentence

3We additionally include about 4K sentence pairs from a pilot study in which the premise sen-
tences were instead drawn from the VisualGenome corpus (Krishna et al. 2016). These examples
appear only in the training set, and have pair identifiers prefixed with vg in the corpus.

CHAPTER 5. A NEW CORPUS FOR NLI 82

(a) Flickr photo available at
http://flickr.com/photos/

studiobeerhorst/1000268201

(b) Flickr photo available at
http://flickr.com/photos/

scottfeldstein/101362133

Figure 5.2: Two examples of images included in the Flickr30K corpus. Note that
while these images were used to generate the Flickr30k sentences, which are used as
premises in SNLI, our annotators did not see images when constructing or labeling
hypotheses for SNLI. Both images are released under the Creative Commons CC BY
2.0 license: http://creativecommons.org/licenses/by/2.0

http://flickr.com/photos/studiobeerhorst/1000268201
http://flickr.com/photos/studiobeerhorst/1000268201
http://flickr.com/photos/scottfeldstein/101362133
http://flickr.com/photos/scottfeldstein/101362133
http://creativecommons.org/licenses/by/2.0

CHAPTER 5. A NEW CORPUS FOR NLI 83

Dataset sizes:
Training pairs 550,152
Development pairs 10,000
Test pairs 10,000

Sentence length:
Premise mean token count 14.1
Hypothesis mean token count 8.3

Parser output:
Premises with ‘S’ root tag 74.0%
Hypotheses with ‘S’ root tag 88.9%
S–S pairs 67.1%
NP–S pairs 21.2%
S–NP pairs 6.2%
NP–NP pairs 3.9%
Pairs with other root tags 1.6%
Distinct words (ignoring case) 37,026

Table 5.4: Key statistics for the raw sentence pairs in SNLI. Since the two halves of
each pair were collected separately, we report some statistics for both.

pair can be recovered solely based on the available text, we do not use the images at

all during corpus collection.

Table 5.4 reports some key statistics about the collected corpus, and Figure 5.3

shows the distributions of sentence lengths for both the source hypotheses and the

newly collected premises. We observe that while premise sentences varied considerably

in length, hypothesis sentences tended to be as short as possible while still providing

enough information to yield a clear judgment, clustering at around seven words.

We also observe that the bulk of the captions from both sources were syntactically

complete sentences rather than bare noun phrase fragments, and the output of the

parser attests to this.

5.3.3 Data validation

In order to measure the quality of the corpus, and in order to construct maximally

useful testing and development sets, we perform an additional round of validation

CHAPTER 5. A NEW CORPUS FOR NLI 84

0 5 10 15 20 25 30 35 40 45
0

20,000

40,000

60,000

80,000

100,000

Sentence Length

N
u
m
b
er

of
S
en
te
n
ce
s

Premises
Hypotheses

Figure 5.3: The distribution of sentence length.

for about 10% of the data. This validation phase follows the same basic form as the

Mechanical Turk labeling task used to label the SICK entailment data: we present

workers with pairs of sentences in batches of five, and ask them to choose a single

label for each pair. We supply each pair to four annotators, yielding five labels per

pair including the label used by the original author. The instructions are shown

in Figure 5.4, and the annotator web interface includes a link to an FAQ similar

to the one used during data collection. Though we initially used a very restrictive

qualification (based on past approval rate) to select workers for the validation task, we

nonetheless discovered (and deleted) some instances of random guessing in an early

batch of work, and subsequently instituted a fully closed qualification restricted to

about 30 trusted workers.

We assign a gold label to each validated pair. If any one of the three labels is

chosen by at least three of the five annotators, it is used as the gold label. If there is

no such consensus, which occurs in about 2% of cases, we assign the placeholder label

‘-’. While these unlabeled examples are included in the corpus distribution, they are

unlikely to be helpful for the standard NLI classification task, and we do not include

them in either training or evaluation in the experiments that I discuss in the following

CHAPTER 5. A NEW CORPUS FOR NLI 85

The Stanford University NLP Group is collecting data for use in research on computer
understanding of English. We appreciate your help!
Your job is to figure out, based on the correct caption for a photo, if another caption is
also correct:

• Choose definitely correct if any photo that was captioned with the caption on
the left would also fit the caption on the right. Example: “A kitten with spots is

playing with yarn.”/“A cat is playing.”

• Choose maybe correct if the second caption could describe photos that fit the
first caption, but could also describe sentences that don’t fit the first caption.
Example: “A kitten with spots is playing with yarn.”/“kitten is playing with yarn

on a sofa.”

• Choose definitely incorrect if any photo that could possibly be captioned with
the caption on the left would not fit the caption on the right. Example: “A kitten

with spots is playing with yarn.”/“A puppy is playing with yarn.”

We have already labeled one out of every 250 HITs. Completing one of these HITs
yields a bonus of $1 for each response that matches our label for up to $5.

Figure 5.4: The instructions used on Mechanical Turk for data validation.

CHAPTER 5. A NEW CORPUS FOR NLI 86

General:
Validated pairs 56,951
Pairs w/ unanimous gold label 58.3%

Individual annotator label agreement:
Individual label = gold label 89.0%
Individual label = author’s label 85.8%

Gold label–author’s label agreement:
Gold label = author’s label 91.2%
Gold label 6= author’s label 6.8%
No gold label (no 3 labels match) 2.0%

Fleiss :
contradiction 0.77
entailment 0.72
neutral 0.60
Overall 0.70

Table 5.5: Statistics for the validated pairs. The author’s label is the label used
by the worker who wrote the premise to create the sentence pair. A gold label
reflects a consensus of three votes from among the author and the four annotators.

two chapters.

The results of this validation process are summarized in Table 5.5. Nearly all of the

examples receive a majority label, indicating broad consensus about the nature of the

data and categories. The gold-labeled examples are very nearly evenly distributed

across the three labels. The Fleiss  scores (computed over every example with

a full five annotations) are likely to be conservative given the large and unevenly

distributed pool of annotators, but they still provide insights about the levels of

disagreement across the three semantic classes. This disagreement likely reflects not

just the limitations of large crowdsourcing e↵orts but also the uncertainty inherent

in naturalistic NLI. Regardless, the overall rate of agreement is extremely high,

suggesting that the corpus is su�ciently high quality to pose a challenging but realistic

machine learning task.

CHAPTER 5. A NEW CORPUS FOR NLI 87

5.3.4 The distributed corpus

Table 5.1 shows a set of randomly chosen validated examples from the development set

with their labels. Qualitatively, we find the data draws fairly extensively on common-

sense knowledge, and that hypothesis and premise sentences often di↵er structurally

in significant ways, suggesting that there is room for improvement beyond superficial

word alignment models. We also find the sentences that we collected to be largely

fluent, correctly spelled English, with a mix of full sentences and caption-style noun

phrase fragments, though punctuation and capitalization are often omitted.

The corpus is available under a CreativeCommons Attribution-ShareAlike license,

the same license used for the Flickr30K source captions. It can be downloaded at:

http://nlp.stanford.edu/projects/snli/

Partition We distribute the corpus with a prespecified train/test/development

split. The test and development sets contain 10K examples each. Each original

ImageFlickr caption occurs in only one of the three sets, and all of the examples in

the test and development sets have been validated.

Parses The distributed corpus includes parses produced by the Stanford PCFG

Parser 3.5.2 (Klein & Manning 2003), trained on the standard training set as well

as on the Brown Corpus (Francis & Kucera 1979), which we find to improve the

parse quality of the descriptive sentences and noun phrases found in the descriptions.

Parses are available in both the standard PTB format and in the binarized unlabeled

format used by tree-structured neural network models.

General evaluation standards While we hope that the corpus will be valuable

in a variety of ways, we encourage researchers working on tools for semantic repre-

sentation and inference to evaluate on the data in a uniform way: training on only

the (parsed and/or unparsed) sentences included in the training set and doing final

evaluations on only the subset of the test set for which there are single gold labels.

Chapters 6 and 7 contain evaluations of this kind.

http://nlp.stanford.edu/projects/snli/

CHAPTER 5. A NEW CORPUS FOR NLI 88

5.4 Understanding SNLI

In this section I o↵er examples and summary statistics that are meant to provide

a clearer picture of the contents of the SNLI corpus and of the kinds of language

understanding that it tests.

5.4.1 Common patterns and possible shortcuts

If SNLI is to accomplish its stated goals, it should be impossible for a model to do

well at SNLI entailment classification without incorporating a fairly sophisticated

approximation of human language understanding. This appears to be the case: I

have been unable to identify any significant properties of the data that would allow a

model to cheat by exploiting trivial correspondences between the contents of sentence

pairs and their labels. This section discusses some key properties of the data that

could potentially have yielded such undesirable regularities.

There is/are A handful of annotators chose to begin most or all of their entail-

ment hypotheses with there is, there are, or a contracted version of one of those two,

followed by some entity from the premise, as here.

(5.4) Premise: A white duck is spreading its wings while sitting on the water.

Hypothesis: There is an animal in the water.

Label: entailment

This tendency in the data is noticeable, but neither frequent enough nor regular

enough to provide a substantial aid in entailment classification. Only 3.8% of the test

hypotheses follow this template, and of those only 64.4% are labeled entailment.

Insertion of negation It would be possible for annotators to systematically create

contradiction hypotheses by simply copying the premise and negating some part

of it, as in this invented hypothetical example.

(5.5) Premise: A white duck is spreading its wings while sitting on the water.

Hypothesis: A white duck is not spreading its wings while sitting on the

CHAPTER 5. A NEW CORPUS FOR NLI 89

water.

Label: contradiction

This style of contradiction is reasonably well attested in SICK, and is easy to create,

but we find it to be rare in SNLI. Only 1.4% of test examples contain inserted negation

of any kind (tokens of not or n’t that appear in the hypothesis but not the premise),

and few of those follow this simple template. Only 45.4% of this broader set of

inserted negation examples are labeled contradiction, and these often involve

more complex alignments between premise and hypothesis than are seen in (5.5), as

below.

(5.6) Premise: A young boy, wearing a jesters hat is enjoying himself sledding.

Hypothesis: A young boy is just sitting down and not sledding.

Label: contradiction

Many more examples use inserted negation in a variety of other ways that corre-

spond to all three possible labels, as in (5.7), making the presence of inserted negation

only a very weak cue to the overall label.

(5.7) Premise: A shirtless man with cropped hair smokes a cigarette and ties a

plastic bag.

Hypothesis: The man is not wearing a shirt.

Label: entailment

Pure insertion/deletion A small minority of the hypotheses in SNLI were created

either by only deleting words from the premise as in (5.8), or by preserving the premise

in its entirety and adding additional words as in (5.9).

(5.8) Premise: A man interviews a boy in a gathering of people.

Hypothesis: A man interviews a boy.

Label: entailment

(5.9) Premise: A soldier using binoculars in a desert.

Hypothesis: A soldier using binoculars searches for the enemy in a

CHAPTER 5. A NEW CORPUS FOR NLI 90

desert.

Label: neutral

If a model can reliably detect instances of pure insertion or deletion, it will benefit

from that ability: most hypotheses built by pure deletion are entailments (since the

truth conditions of the premise are likely being relaxed with the removal of content)

and most hypotheses built by pure insertion are neutral. There are exceptions to

both patterns, like the two examples below.

(5.10) Premise: A Man is eating food next to a child on a bench.

Hypothesis: Man eating child.

Label: contradiction

(5.11) Premise: A woman wearing sunglasses.

Hypothesis: A woman is wearing a pair of sunglasses.

Label: entailment

Of the 2.5% of test examples built by pure deletion, 98% are labeled entailment,

and of the 0.6% of test examples built by pure insertion, 81% are labeled neutral.

Unrelated sentences Under SNLI’s definition of contradiction, it is possible

for annotators to create contradiction hypotheses by simply making up novel

sentences that have nothing to do with the premise in either form or content, as here.

(5.12) Premise: A man is playing the saxophone in the street and some people

are sitting on the curb next to the street by him.

Hypothesis: A woman is flying crosscountry.

Label: contradiction

Examples like this are fairly rare. Out of a random sample of 100 test examples,

I was able to identify three that contained hypotheses with arguably no relation to

their premises. All three were labeled contradiction.

CHAPTER 5. A NEW CORPUS FOR NLI 91

Typos and grammatical errors Typos and instances of non-standard grammar

(relative to my intuitions as a first-language US English speaker) are relatively com-

mon, likely due to a combination of non-native English speaker annotators, annotators

using nonstandard dialects of English, or simply fast or sloppy work. Out of the 100

example sample of the test set, I identified nine instances of non-standard grammar

and three typos, with both phenomena relatively evenly distributed across the three

label classes.

Both typos and grammatical variation will likely make it harder for machine learn-

ing systems to model the SNLI task, and typos in particular will pose a major obstacle

to systems that are based on word-level features, including both bag-of-words features

in conventional NLP classifier models and word-level embedding matrices in distri-

buted representation models like the neural networks under study in this dissertation.

5.4.2 SNLI and natural logic

The types of inference—and the types of language understanding—that SNLI tests

are strikingly di↵erent from the inferences studied in MacCartney-style natural logic:

most rely on at least some amount of common sense or world knowledge, and few

depend crucially on the kinds of lexical relationships and projectivity phenomena

that natural logic is centered on. This observation need not reflect poorly on the

value of either natural logic or on the value of the kinds of inferences captured by

SNLI, but it is unproductive to discuss SNLI’s place in the surrounding inference

literature without keeping this stark di↵erence in mind. This section looks at points

of di↵erence between natural logic and the style of inference captured by SNLI.

Lexical entailments Much of the machinery of natural logic is responsible for

determining the relationship between lexical entailment relations and sentence-level

entailment relations, and similar kinds of reasoning do appear in SNLI. While it is

rare for a single lexical relation to determine a sentential relation in SNLI, it is fairly

common for lexical relations between a premise word and a corresponding hypothesis

word to play a key role in inference, as here.

CHAPTER 5. A NEW CORPUS FOR NLI 92

(5.13) Premise: A woman leans over a small fence to take a picture of a yellow

flower.

Hypothesis: The flower is blue

Label: contradiction

I was able to identify relevant lexical relations like this one in 28 out of 100 test

examples, with these relations distributed fairly evenly across classes.

Monotonicity with quantifiers Monotonicity inferences under quantification are

a central example of the kinds of inference that natural logic can handle e↵ectively.

Inferences of this kind play a subtle role in many SNLI examples, but sentences like

those studied in Section 3.5 which directly foreground this kind of reasoning are rare.

For example, of the 100 examples that I manually inspected, only four involved a

substitution of one quantifier in the hypothesis for another in the premise, and all

four had substantial additional complexity beyond the bare monotonicity inference,

as here.

(5.14) Premise: Three people sit on a bench at a station, the man looks oddly at

the two women, the redheaded women looks up and forward in an awkward

position, and the yellow blond girl twiddles with her hair.

Hypothesis: Some people stand around.

Label: contradiction

SNLI and commonsense background knowledge

Natural logic—and logical approaches to NLI in general—tend to focus on recognizing

as rich a set of inferences as possible following from a single premise or a small

set of premises. Knowledge is generally introduced into the system through lexical

entailment statements and projectivity rules (at least in the case of natural logic)

rather than through additional premises. Since SNLI is built up of labeled sentence

pairs, it superficially appears to have a similar kind of focus, highlighting the ability to

do local inference without extensive background knowledge. However, the inferences

in SNLI do appear to rely extensively on outside knowledge. This knowledge is

CHAPTER 5. A NEW CORPUS FOR NLI 93

unstated and takes the form of commonsense background knowledge, but it can often

be e↵ectively framed as sets of additional premises that need to be available to a

model for the model to correctly interpret the inference, as in (5.15) below.

(5.15) a. Premise: Two children, both wearing tan coats, are embracing one

another.

b. [Commonsense premise I:] If two people are embracing one another,

they are facing one another.

c. [Commonsense premise II:] If someone is running, they are moving

in the direction that they are facing.

d. [Commonsense premise III:] If two people are embracing one an-

other, they cannot move in two di↵erent directions.

e. Hypothesis: Two kids are running down a highway.

f. Label: contradiction

These commonsense premises are facts or tendencies about the world rather than

facts about language, and they cannot be straightforwardly expressed as lexical en-

tailments. These premises are also necessary. For example, if embracing were replaced

by holding hands, then commonsense premise I would not apply, and the correct label

would potentially change from contradiction to neutral. Out of the sample of

100 test examples, I was able to identify 49 that involved inferences from premises of

this kind, distributed evenly across all three label classes.

It would be scientifically simplest to study the computational modeling of natural

language understanding on its own, isolating it from the separate problem of modeling

contingent facts about the world. However, if we are to be able to learn our models of

language from naturally occurring text—a prerequisite for training large models like

the neural networks studied here—we will be forced to grapple with the tight coupling

between the way that language is used and the things that it is used to describe.

CHAPTER 5. A NEW CORPUS FOR NLI 94

5.5 Conclusion

Natural languages are powerful vehicles for reasoning, and nearly all questions about

meaningfulness in language can be reduced to questions of entailment and contra-

diction in context. This suggests that NLI is an ideal testing ground for theories of

semantic representation, and that training for NLI tasks can provide rich domain-

general semantic representations. To date, however, it has not been possible to fully

realize this potential due to the limited nature of existing NLI resources. This chap-

ter seeks to remedy this with a new, large-scale, naturalistic corpus of sentence pairs

labeled for entailment, contradiction, and independence.

Chapter 6

Modeling natural language

inference

This chapter presents work that was published as Bowman, Angeli, Potts & Manning

(2015a). My coauthor Gabor Angeli is responsible for the evaluation of the existing

baseline models presented in Section 6.2.1 and the design and evaluation of the feature-

based classifier models presented in Section 6.2.2, and wrote the majority of those

sections. The other two co-authors, my advisors, contributed primarily in an advisory

role. Section 6.4.1 was composed for this dissertation, and is entirely my own.

6.1 Introduction

We aim for the Stanford Natural Language Inference (SNLI) corpus, introduced in

Chapter 5, to serve as a vehicle for the training and evaluation of neural network

models for NLI. In order for these evaluations to be informative, two things are

necessary: a comparison with existing non-neural network models for NLI, and a set

of strong neural network baselines. This chapter provides both.

In this chapter, we evaluate a variety of models for natural language inference,

including rule-based systems, simple linear classifiers, and neural network-based mod-

els. We find that two models achieve comparable performance: a feature-rich classifier

95

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 96

model and a neural network model centered around LSTM sentence encoders. We fur-

ther evaluate the LSTM model by taking advantage of its ready support for transfer

learning, and show that it can be adapted to an existing NLI challenge task, setting

a new state of the art among neural network models. Finally, I survey work on SNLI

that has been done subsequent to the release of SNLI and these baselines, and suggest

that the corpus has already succeeded at spurring neural networks research on NLI.

6.2 Establishing baselines for SNLI

The most immediate application for the SNLI corpus is in developing models for the

task of NLI. In particular, since it is dramatically larger than any existing corpus of

comparable quality, we expect it to be suitable for training parameter-rich models like

neural networks, which have not previously been competitive at this task. Our ability

to evaluate standard classifier-based NLI models, however, is limited to those which

are able to scale to SNLI’s size without modification, so a more complete comparison

of approaches will have to wait for future work. In this section, we explore the

performance of three classes of models which scale readily:

• Models from a well-known NLI system, the Excitement Open Platform (Sec-

tion 6.2.1).

• Variants of a strong but simple feature-based classifier model, which makes use

of both unlexicalized and lexicalized features (Section 6.2.2).

• Distributed representation models, including a baseline model and neural net-

work sequence models (Section 6.2.3).

6.2.1 Excitement Open Platform models

The first class of models is drawn from the Excitement Open Platform (EOP; Padó

et al. 2015, Magnini et al. 2014). EOP is a tool for quickly developing NLI systems

while sharing components such as common lexical resources and evaluation sets. We

evaluate on two algorithms included in the distribution: a simple edit distance-based

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 97

System SNLI SICK RTE-3

Edit Distance-Based 71.9 65.4 61.9
Classifier-Based 72.2 71.4 61.5

+ Lexical Resources 75.0 78.8 63.6

Table 6.1: Two-class test accuracy for two simple baseline systems included in the
Excitement Open Platform, as well as a model making use of more sophisticated
lexical resources.

algorithm and a classifier-based algorithm, the latter both in a bare form and aug-

mented with EOP’s full suite of lexical resources.1

Our primary goal with EOP is to better understand the di�culty of the task of

classifying SNLI corpus inferences. We approach this by running the same system

on several datasets: the SNLI test set, the SICK test set, and the standard RTE-3

test set (Giampiccolo et al. 2007). Each of the models is separately trained on the

training set of each corpus. To best accommodate existing models, all evaluations in

this section use two-class entailment. To convert three-class problems like SICK and

SNLI to this setting, all instances of contradiction and unknown are converted

to non-entailment. This yields a most-frequent-class baseline accuracy of 66% on

SNLI, and 71% on SICK.

The edit distance algorithm tunes the weight of the three case-insensitive edit

distance operations on the training set, after removing stop words. We also evaluate

the base classifier-based system distributed with the platform, and a variant which

uses information from WordNet (Miller 1995) and VerbOcean (Chklovski & Pantel

2004), as well as features based on tree patterns and dependency tree skeletons (Wang

& Neumann 2007). The results for RTE-3 are taken from Magnini et al. (2014). The

results of these experiments (Table 6.1) show that, at least for this limited family

of two-class classification models, SNLI is comparably di�cult to the smaller SICK

corpus. No existing model finds any regularities in the data that would allow it to

reach excellent performance.

1This subsection reflects work primarily done by my coauthor Gabor Angeli.

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 98

6.2.2 The lexicalized classifier

Unlike the RTE datasets, SNLI’s size supports approaches which make use of rich lex-

icalized features. In this section, we evaluate a simple lexicalized classifier to explore

the ability of non-specialized models to exploit these features in lieu of more involved

language understanding. This classifier implements 6 feature types; 3 unlexicalized

and 3 lexicalized:2

1. The BLEU score of the hypothesis with respect to the premise, using an n-gram

length between 1 and 4.

2. The length di↵erence between the hypothesis and the premise, as a real-valued

feature.

3. The overlap between words in the premise and hypothesis, both as an absolute

count and a percentage of possible overlap, and both over all words and over

just nouns, verbs, adjectives, and adverbs.

4. An indicator for every unigram and bigram in the hypothesis.

5. Cross-unigrams: for every pair of words across the premise and hypothesis which

share a POS tag, an indicator feature over the two words.

6. Cross-bigrams: for every pair of bigrams across the premise and hypothesis

which share a POS tag on the second word, an indicator feature over the two

bigrams.

We report results in Table 6.2, along with ablation results for models without

the cross-bigram features and for models with no lexical features at all. The full

model performs substantially better than any of the EOP models, reaching higher

absolute accuracy on the harder three-class classification task. There is a substantial

jump in accuracy from using lexicalized features, and another from using the very

sparse cross-bigram features. The latter result suggests that there is value in letting

the classifier automatically learn to recognize structures like explicit negations and

adjective modification. A similar result was shown in Wang & Manning (2012) for

bigram features in sentiment analysis.

2This subsection reflects work primarily done by my coauthor Gabor Angeli.

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 99

System SNLI SICK
Train Test Train Test

Lexicalized 99.7 78.2 90.4 77.8
Unigrams Only 93.1 71.6 88.1 77.0
Unlexicalized 49.4 50.4 69.9 69.6

Table 6.2: Three-class accuracy, training on either SNLI or SICK, including models
lacking cross-bigram features (Feature 6), and lacking all lexical features (Features
4–6). We report results both on the test set and the training set to judge overfitting.

It is surprising that the classifier performs as well as it does with only extremely

limited access to information about word order and alignment. Although we ex-

pect that richer models would perform better, the results suggest that given enough

data, cross bigrams with the noisy part-of-speech overlap constraint can produce a

reasonably e↵ective model.

6.2.3 Sentence-encoding models

SNLI is suitably large and diverse to allow for the training of neural network models

that produce distributed representations of sentence meaning. In this section, we

compare the performance of three such models on the corpus. As elsewhere in this

dissertation, we use sentence encoding as an intermediate step in the NLI classification

task: each model must produce a vector representation of each of the two sentences

without using any context from the other sentence, and the two resulting vectors

are then passed to a neural network classifier which predicts the label for the pair.

This highlights the ability of these models to learn useful representations of meaning

(which may be independently useful for subsequent tasks), at the cost of excluding

from consideration possible strong neural models for NLI that directly compare the

two inputs at the word or phrase level.

Our neural network classifier, depicted in Figure 6.1 (and largely identical to the

one-layer model used in Section 3.4), is simply a stack of three 200D tanh layers, with

the bottom layer taking the concatenated sentence representations as input and the

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 100

3-way softmax classifier

200D tanh layer

200D tanh layer

200D tanh layer

100D premise 100D hypothesis

sentence model
with premise input

sentence model
with hypothesis input

Figure 6.1: The neural network classification architecture: for each sentence-encoding
model evaluated in Tables 6.3 and 6.4, two identical sentence encoders process the
two input sentences and supply the 100D inputs shown here.

top layer feeding a softmax classifier, all trained jointly with the sentence-encoding

model itself.

We test three sentence-encoding models, each set to use 100D phrase and sentence

encodings. The baseline sum-of-words (a.k.a. continuous bag-of-words, or CBOW)

sentence-encoding model simply sums the embeddings of the words in each sentence.

In addition, we experiment with two simple sequence-based models: a plain RNN

and an LSTM RNN. E�ciency considerations (discussed and addressed in Chapter 7)

prevent the use of tree-structured models in this setting.

The word embeddings for all of the models are initialized with the 300D reference

GloVe vectors (840B token version; Pennington et al. 2014) and fine-tuned as part

of training. In addition, all of the models use an additional tanh neural network

layer to map these 300D embeddings into the lower-dimensional phrase and sentence

encoding space. All of the models are randomly initialized using standard techniques

and trained using AdaDelta (Zeiler 2012) minibatch SGD until performance on the

development set stops improving. We apply L2 regularization to all models, manually

tuning the strength coe�cient � for each, and additionally apply dropout (Srivastava

et al. 2014) to the inputs and outputs of the sentence-encoding models (though not

to its internal connections) with a fixed dropout rate. All models are implemented in

a common framework for this chapter.

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 101

Sentence model Train Test

100D Sum of words 79.3 75.3
100D RNN 73.1 72.2
100D LSTM RNN 84.8 77.6

Table 6.3: Accuracy in three-class classification on the SNLI training and test sets
for each model.

The results are shown in Table 6.3. The sum-of-words model performs somewhat

better than the fundamentally similar unigram lexicalized classifier, likely benefiting

from its better ability to handle rare words through GloVe. However, it underperforms

the full lexicalized classifier, likely since it lacks any access to word order. Of the

two RNN models, the LSTM’s more robust ability to learn long-term dependencies

serves it well, giving it a substantial advantage over the plain RNN, and resulting

in performance that is essentially equivalent to the lexicalized classifier on the test

set (LSTM performance near the stopping iteration varies by up to 0.5% between

evaluation steps). While the lexicalized model fits the training set almost perfectly,

the gap between train and test set accuracy is relatively small for all three neural

network models, suggesting that research into significantly higher capacity versions

of these models would be productive.

6.2.4 Analysis and discussion

Figure 6.2 shows a learning curve for the LSTM and the lexicalized and unlexicalized

feature-based models. It shows that the large size of the corpus is crucial to both the

LSTM and the lexicalized model, and suggests that additional data would yield still

better performance for both. In addition, though the LSTM and the lexicalized model

show similar performance when trained on the current full corpus, the somewhat

steeper slope for the LSTM towards the right of the figure hints that its ability

to learn arbitrarily structured representations of sentence meaning may give it an

advantage over the more constrained lexicalized model on still larger datasets.

We are also struck by the speed with which the lexicalized classifier outperforms

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 102

100 101 102 103 104 105
30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

Training Examples

A
cc
u
ra
cy

Lexicalized
LSTM

Unexicalized

Figure 6.2: A learning curve showing how the baseline classifiers and the LSTM
perform when trained to convergence on varied amounts of training data. The y-axis
starts near a random-chance accuracy of 33%. The minibatch size of 64 that we used
to tune the LSTM sets a lower bound on data for that model.

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 103

its unlexicalized counterpart. With only 100 training examples, the cross-bigram clas-

sifier already performs better. Empirically, we find that the top weighted features for

the classifier trained on 100 examples tend to be high precision entailments; e.g. play-

ing ! outside, a banana ! person eating. If relatively few spurious entailments get

high weight—as it appears is the case—then it makes sense that, when prominent

bigram features do fire, they boost accuracy in identifying entailments.

There are revealing patterns in the errors common to all the models considered

here. Despite the large size of the training corpus and the distributional information

captured by GloVe initialization, many lexical relationships are still misanalyzed,

leading to incorrect predictions of neutral, even for pairs that are common in

the training corpus like beach/surf and sprinter/runner. Semantic mistakes at the

phrasal level, like the prediction of contradiction for

(6.1) Premise: A male is placing an order in a deli

Hypothesis: A man buying a sandwich at a deli

indicate that additional attention to compositional semantics would pay o↵. However,

many of the persistent problems run deeper, to inferences that depend on world

knowledge and context-specific inferences, as in the entailment pair

(6.2) Premise: A race car driver leaps from a burning car

Hypothesis: A race car driver escaping danger

for which both the lexicalized classifier and the LSTM predict neutral. In other

cases, the models’ attempts to shortcut this kind of inference through lexical cues

can lead them astray. Some of these examples have qualities reminiscent of Wino-

grad schemas (Winograd 1972, Levesque 2014). For example, all the models wrongly

predict entailment for

(6.3) Premise: A young girl throws sand toward the ocean

Hypothesis: A girl can’t stand the ocean

presumably because of distributional associations between throws and can’t stand.

Analysis of the models’ predictions also yields insights into the extent to which

they grapple with event and entity coreference. For the most part, the original image

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 104

prompts contained a focal element that the caption writer identified with a syntactic

subject, following information structuring conventions associating subjects and topics

in English (Ward & Birner 2004). The annotators generally followed suit, writing

sentences that, while structurally diverse, share topic/focus (theme/rheme) structure

with their premises. This promotes a coherent, situation-specific construal of each

sentence pair. This is information that our models can easily take advantage of, but

it can lead them astray. For instance, all of them stumble with the amusingly simple

case

(6.4) Premise: A woman prepares ingredients for a bowl of soup

Hypothesis: A soup bowl prepares a woman

in which prior expectations about parallelism are not met. Another headline example

of this type is

(6.5) Premise: A man wearing padded arm protection is being bitten by a Ger-

man shepherd dog

Hypothesis: A man bit a dog

which all the models wrongly diagnose as entailment, though the sentences report

two very di↵erent stories. A model with access to explicit information about syntactic

or semantic structure should perform better on cases like these.

The following chapter provides a more in-depth quantitative analysis of some of

these patterns, both on models similar to these baselines and on newly proposed

models.

6.3 Transfer learning with SICK

To the extent that successfully training a neural network model like the LSTM on

SNLI forces that model to encode broadly accurate representations of English scene

descriptions and to build an entailment classifier over those relations, we should expect

it to be readily possible to adapt the trained model for use on other NLI tasks. In

this section, we evaluate on the SICK entailment task using a simple transfer learning

method (Pratt et al. 1991) and achieve competitive results.

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 105

Training sets Train Test

SNLI only 42.0 46.7
SICK only 100.0 71.3
SNLI and SICK (transfer) 99.9 80.8

Table 6.4: LSTM three-class accuracy on the SICK train and test sets under three
training regimes.

To perform transfer, we take the parameters of the LSTM RNN model trained

on SNLI and use them to initialize a new model, which is trained from that point

only on the training portion of SICK. The only newly initialized parameters are

softmax layer parameters and the embeddings for words that appear in SICK, but

not in SNLI (which are populated with GloVe embeddings as above). We use the same

model hyperparameters that were used to train the original model, with the exception

of the L2 regularization strength, which is re-tuned. We additionally transfer the

accumulators that are used by AdaDelta to set the learning rates. This lowers the

starting learning rates, and is intended to ensure that the model does not learn too

quickly in its first few epochs after transfer and destroy the knowledge accumulated

in the pretransfer phase of training.

The results are shown in Table 6.4. Training on SICK alone yields poor perfor-

mance, and the model trained on SNLI fails when tested on SICK data, labeling

more neutral examples as contradictions than correctly, possibly as a result of

subtle di↵erences in label definitions between the two corpora. In contrast, transfer-

ring SNLI representations to SICK yields a new state of the art for an unaugmented

neural network model, surpasses the available EOP models, and approaches both

the non-neural network state of the art at 84.6% (Lai & Hockenmaier 2014) and

the 84% level of interannotator agreement. This suggests that the introduction of

a large high-quality corpus makes it possible to train representation-learning models

for sentence meaning that are competitive with the best hand-engineered models on

inference tasks.

We also attempted to apply this same transfer evaluation technique to the RTE-3

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 106

challenge, but found that the small training set (800 examples) did not allow the

model to adapt to the unfamiliar genre of text used in that corpus, such that no

training configuration yielded competitive performance. Subsequent research by Mou

et al. (2016a) replicates the above result on SNLI–SICK transfer, but shows that

no reasonably straightforward transfer mechanism is able to yield improvements on

transfer from SNLI to the MSR Paraphrase corpus, which like RTE-3 is based on

newswire text. This suggests that standard neural network models trained on SNLI

are able to learn sentence representations that are e↵ective for NLI over scene descrip-

tions, but that these representations do not capture meaning in a general enough way

to be e↵ective on other tasks and text genres. Additional data collection or advances

in semisupervised learning will likely be a necessary step in developing high-quality

sentence-encoding models for new tasks and genres.

6.4 Discussion

In this chapter, we use SNLI to evaluate a range of models, and find that both simple

lexicalized models and neural network models perform well, and that the representa-

tions learned by a neural network model on SNLI can be used to dramatically improve

performance on a preexisting challenge dataset.

In the following chapter, I move from the evaluation of models based on existing

sentence-encoding techniques to the development of new sentence-encoding models

inspired by these results and those of earlier chapters.

6.4.1 Subsequent work

Since the release of SNLI and the publication of the experiments in this chapter,

several outside research groups have used SNLI to evaluate novel neural network

methods for language learning. This subsection discusses the highlights of these

outside e↵orts.

Three of these papers are based on sentence-encoding techniques and follow the

evaluation guidelines from Section 5.3.4:

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 107

• Vendrov et al. (2016) evaluate two di↵erent methods on SNLI. One is based

on a pair of sequence models, as in this chapter, but uses GRU (Cho et al.

2014b) rather than LSTM encoders, and pretrains those encoders using the skip-

thought objective (Kiros et al. 2015) rather than training them directly on SNLI.

This unsupervised pretraining step allows them to e↵ectively train large 1024D

sequence models, and yields 81.4% test accuracy. Their second method builds

on this by adding the use of their novel order-embeddings objective function,

which encourages the model to learn sentence encodings that capture entailment

information explicitly in the geometry of the embedding space. This objective

is only compatible with two-class classification, but they outperform a two-

class variant of their skip-thought baseline (87.7%) with this extended model,

reaching 88.6% accuracy on this easier test configuration.

• Mou et al. (2016b) evaluate a novel tree-based convolutional neural network

for sentence encoding, which encodes sentences by pooling information from a

neural network filter layer that is applied to every subtree of each sentence.

This allows them to reach 82.1% accuracy, though they do not compare with

any baseline models implemented within their framework. This represents the

first use of tree structure in neural network models for SNLI.

• In an as yet unpublished manuscript, Liu et al. (2016) evaluate a sentence-

encoding model based on bidirectional LSTM RNNs augmented with within-

sentence attention similar to that of the earlier Cheng et al. (2016) work dis-

cussed below. Unlike that earlier work, this model performs attention only

within sentences, making it a pure sentence-encoding model. Their method is

strikingly e↵ective, yielding 84.2% test accuracy in a straightforward evaluation,

and 85.0% with the addition of the collapsing-based preprocessing technique in-

troduced in Section 5.2. The relationship between the information flow induced

by tree-structured models and that induced by within-sentence attention models

like this one remains a promising area for further research.

Four more papers have published results on SNLI using attention-based models

which introduce dependencies between the model components that encode the two

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 108

sentences:

• Rocktäschel et al. (2016) introduce the use of soft attention (Bahdanau et al.

2015) to sequence pair classification, encoding each sentence using an LSTM

RNN and then using a novel attention component to build a new representa-

tion of the premise that captures information about its relationship with the

hypothesis. This allows them to reach 83.5% accuracy.

• Wang & Jiang (2016) improve upon the model of Rocktäschel et al. (2016) by

adding an additional separately parameterized LSTM that does not directly

read either sentence, but rather accumulates the results of the attention process

to incrementally construct a holistic representation of the sentence pair. This

allows them to reach 86.1% accuracy.

• Cheng et al. (2016) introduce the novel LSTMN sentence encoder, which per-

forms soft attention within the process of encoding single sentences. Adding

this technique to soft attention between sentences, as in Wang & Jiang (2016),

yields 86.3% accuracy.3

• Parikh et al. (2016) introduce a simpler attention-based model that does not

rely on an RNN for preprocessing, and as such has limited access to word order

information. That model alone reaches 86.3%, and adding a very weak word

order signal through a form of intrasentence attention boosts performance to

86.9%.

Some additional recent work, concurrent with or subsequent to the creation of

SNLI, has explored the use of learned representation models on the SICK entailment

task. These results are consistent with the claim that SICK’s small training set

makes it relatively ine↵ective as an evaluation platform for low-bias machine learning

models:
3The published version of that paper reports an additional result of 89.0% accuracy using what

appear to be fairly standard methods on top of the base system, but the authors have privately
informed me that the methods behind that particular result make it incomparable to other published
results.

CHAPTER 6. MODELING NATURAL LANGUAGE INFERENCE 109

• Kruszewski et al. (2015) introduce a neural network with boolean activations

that is meant to capture a similar intuition to the order-embeddings approach

of Vendrov et al. (2016) described above. They evaluate this model on a number

of tasks, including NLI with SICK, but they underperform even a simple most-

frequent-class baseline model on this task.

• Pham et al. (2015) perform a similar multi-task evaluation that includes SICK as

part of their evaluation of the unsupervised C-PHRASE compositional sentence-

encoding model. They reach 75% accuracy on this task, exceeding simple base-

lines, but underperforming nearly all non-neural models, as well as the fully-

supervised neural network model presented in Section 5.2.

• Yin et al. (2015) use SICK as part of a multi-task evaluation for their novel

model which combines soft attention with convolutions. This model in conjunc-

tion with several novel techniques, including the addition of handcrafted fea-

tures, a hybrid SVM-NN classifier, and an alignment-based preprocessing step

similar to the one used in Section 5.2, reaches strong performance at 86.2%.

Chapter 7

A fast unified parser-interpreter

This chapter presents work that was published as Bowman, Gauthier, Rastogi, Gupta,

Manning & Potts (2016). This paper resulted from an active collaboration among

the first four authors. Jon Gauthier and I were jointly responsible for the design of

the novel models presented in this section. All four of us contributed substantially

to the implementation and testing of these models, with Jon taking on nearly all

of the optimization-related work discussed in Section 7.3.7 and in the development

of Algorithm 1. Excepting those two areas, I composed the text of the paper. The

last two co-authors, my advisors, contributed to this paper primarily in an advisory

role. Sections 7.4.3 and 7.5 were composed exclusively for this dissertation, and are

exclusively my work.

7.1 Introduction

Neural network sentence encoders often take the form of sequence-based recurrent

neural network models (see Figure 7.1a and Section 2.3.1), which accumulate infor-

mation over the sentence sequentially; convolutional neural networks (Kalchbrenner

et al. 2014, Zhang et al. 2015), which accumulate information using filters over short

local sequences of words or characters; and tree-structured recursive neural networks

(see Figure 7.1b and 2.3.2), which propagate information up a binary parse tree.

Of these, the tree-structured approach appears to be the principled choice, since

110

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 111

the old cat ate

...

the cat sat down

...

(a) A conventional sequence-based RNN for two sentences.
...

the old cat ate

atethe old cat

old cat

catold

the

...

the cat sat down

sat down

downsat

the cat

catthe

(b) A conventional TreeRNN for two sentences.

Figure 7.1: An illustration of two standard designs for sentence encoders. The Tree-
RNN, unlike the sequence-based RNN, requires a substantially di↵erent connection
structure for each sentence, making batched computation impractical.

meaning in natural language sentences is generally understood to be constructed re-

cursively according to a tree structure. TreeRNNs have shown promise (Chapter 4;

Tai et al. 2015, Li et al. 2015), but have largely been overlooked in favor of sequence-

based RNNs because of their incompatibility with batched computation and their

reliance on external parsers. Batched computation—performing synchronized com-

putation across many examples at once—yields order-of-magnitude improvements in

model run time, and is crucial in enabling neural networks to be trained e�ciently on

large datasets. Because TreeRNNs use a di↵erent model structure for each sentence,

as in Figure 7.1, batching is impossible in standard implementations. In addition,

standard TreeRNN models can only operate on sentences that have already been pro-

cessed by a syntactic parser, which slows and complicates the use of these models at

test time for most applications.

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 112

bu↵er down
sat

stack

cat
the

composition

tracking
transition

reduce

down
sat

the cat composition

tracking
transition

shift

down

sat
the cat

tracking

(a) The SPINN model unrolled for two transitions during the processing of the sentence the
cat sat down. Tracking, transition, and composition are neural network layers. Gray arrows
indicate connections which are blocked by a gating function.

bu↵er

stack

t = 0

down
sat
cat
the

shift

t = 1

down
sat
cat

the

shift

t = 2

down
sat

cat
the

reduce

t = 3

down
sat

the cat

shift

t = 4

down

sat
the cat

shift

t = 5

down
sat

the cat

reduce

t = 6

sat down
the cat

reduce

t = 7 = T

(the cat) ...

output to model
for semantic task

(b) The fully unrolled SPINN for the cat sat down, with neural network layers omitted for
clarity.

Figure 7.2: Two views of SPINN.

This chapter introduces a new model to address both these issues: the Stack-

augmented Parser-Interpreter Neural Network, or SPINN, which is shown in Fig-

ure 7.2. SPINN executes the computations of a tree-structured model in a linearized

sequence, and can incorporate a neural network parser that produces the required

parse structure on the fly. This design improves upon the TreeRNN architecture in

three ways:

• At test time, it can simultaneously parse and interpret unparsed sentences,

removing the dependence on an external parser at nearly no additional compu-

tational cost.

• It supports batched computation for both parsed and unparsed sentences, yield-

ing dramatic speedups over standard TreeRNNs.

• It supports a novel tree–sequence hybrid architecture for handling local linear

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 113

context in sentence interpretation. This model is a basically plausible model

of human sentence processing and yields substantial accuracy gains over pure

sequence- or tree-based models.

We evaluate SPINN primarily on the Stanford Natural Language Inference entail-

ment task (see Chapter 5), and find that it significantly outperforms preexisting

sentence-encoding-based models, and that it yields speed increases of up to 25⇥ over

a standard TreeRNN implementation.

7.2 Related work

There is a fairly long history of work on building neural network-based parsers that use

the core operations and data structures from transition-based parsing, which SPINN

builds on (Henderson 2004, Emami & Jelinek 2005, Titov & Henderson 2010, Chen

& Manning 2014, Buys & Blunsom 2015, Dyer et al. 2015, Kiperwasser & Goldberg

2016). In addition, there has been recent work proposing models designed primarily

for generative language modeling tasks that use this architecture as well (Zhang et al.

2016, Dyer et al. 2016). To the best of our knowledge, SPINN is the first model to

use this architecture for the purpose of sentence interpretation, rather than parsing

or generation.

Socher et al. (2011a,b) present versions of the TreeRNN model which are capable

of operating over unparsed inputs. However, these methods require an expensive

search process at test time. SPINN represents a fast alternative approach.

7.3 The new model: SPINN

7.3.1 Background: Shift-reduce parsing

SPINN is inspired by the shift-reduce parsing formalism (Aho & Ullman 1972),

a transition-based parsing strategy which builds a tree structure over a sequence

(e.g. a natural language sentence) by a single left-to-right scan over its tokens. The

formalism is widely used in natural language parsing (e.g. Shieber 1983, Nivre 2003).

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 114

A shift-reduce parser accepts a sequence of input tokens x = (x
0

, . . . , xN�1

) and

consumes transitions a = (a
0

, . . . , aT�1

), where each a(t) 2 {shift,reduce} specifies

one step of the parsing process. In general a parser may also generate these transitions

on the fly as it reads the tokens. It proceeds left to right through a transition sequence,

combining the input tokens in x incrementally into a tree structure. For any binary-

branching tree structure with N words, this requires T = 2N � 1 transitions through

a total of T + 1 states.

The parser uses two auxiliary data structures: a stack S of partially completed

subtrees and a bu↵er B of tokens yet to be parsed. The parser is initialized with

the stack empty and the bu↵er containing the tokens x of the sentence in order.

Let hS,Bi = h;,xi denote this starting state. It next proceeds through the transition

sequence, where each transition a(t) selects one of the two following operations. Below,

the | symbol denotes the cons (concatenation) operator. We arbitrarily choose to

always cons on the left in the notation below.

SHIFT: hS, x | Bi ! hx | S,Bi. This operation pops an element from the bu↵er

and pushes it onto the top of the stack.

REDUCE: hx | y | S,Bi ! h(x, y) | S,Bi. This operation pops the top two

elements from the stack, merges them, and pushes the result back onto the

stack.

7.3.2 Composition and representation

SPINN is based on a shift-reduce parser, but it is designed to produce a vector

representation of a sentence as its output, rather than a tree as in standard shift-

reduce parsing. It modifies the shift-reduce formalism by using fixed length vectors

to represent each entry in the stack and the bu↵er. Correspondingly, its reduce

operation combines two vector representations from the stack into another vector

using a neural network function.

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 115

The composition function When a reduce operation is performed, the vector

representations of two tree nodes are popped o↵ of the stack and fed into a compo-

sition function, which is a neural network function that produces a representation

for a new tree node that is the parent of the two popped nodes. This new node is

pushed on to the stack.

We use a version of the TreeLSTM layer function for this purpose. In particular,

we use the following formulation, modified from the version in (2.10–2.12) with the

addition of an extra input ~e:

2

66666664

~i

~fl
~fr

~o

~g

3

77777775

=

2

66666664

�

�

�

�

tanh

3

77777775

0

BB@W
composition

2

664

~h
(1)

stack

~h
(2)

stack

~e

3

775+~b
composition

1

CCA(7.1)

~c = ~fl � ~c
(2)

stack

+ ~fr � ~c
(1)

stack

+~i� ~g(7.2)

~h = ~o� ~c(7.3)

where � is the sigmoid activation function, � is the elementwise product, the pairs

h~h(1)

stack

,~c
(1)

stack

i and h~h(2)

stack

,~c
(2)

stack

i are the two input tree nodes popped o↵ the stack,

and ~e is an optional vector-valued input argument which is either empty or comes

from from an external source like the tracking LSTM (see Section 7.3.3 below). The

result of this function, the pair h~h,~ci, is placed back on the stack. Each vector-valued

variable listed is of dimension D except ~e, of the independent dimension D
tracking

.

The stack and bu↵er The stack and the bu↵er are arrays of N elements each

(for sentences of up to N words), with two D-dimensional vectors ~h and ~c in each

element.

Word representations We use word representations based on the 300D vector

package provided with GloVe (840B token version; Pennington et al. 2014). We do

not update these representations during training. Instead, we use a learned linear

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 116

transformation to map each input word vector ~x into a vector pair h~h,~ci that is

stored in the bu↵er:

(7.4)

"
~h

~c

#
= W

word

~x+~b
word

7.3.3 The tracking LSTM

In addition to the stack, the bu↵er, and the composition function, the full SPINN

model includes an additional component: the tracking LSTM. This is a simple low-

dimensional sequence-based LSTM RNN that operates in tandem with the model,

taking inputs from the bu↵er and stack at each step. It is meant to maintain a

low-resolution summary of the portion of the sentence that has been processed so

far, which is used for two purposes: it supplies feature representations to the transi-

tion classifier, which allows the model to stand alone as a parser, and it additionally

supplies a secondary input ~e to the composition function—see 7.1—allowing con-

text information to enter the construction of sentence meaning and forming what is

e↵ectively a tree–sequence hybrid model.

The tracking LSTM’s inputs (yellow in Figure 7.2) are the top element of the

bu↵er ~h(1)

b (which would be moved in a shift operation) and the top two elements of

the stack ~h(1)

stack

and ~h(2)

stack

(which would be composed in a reduce operation).

Why a tree–sequence hybrid? Lexical ambiguity is ubiquitous in natural lan-

guage. Most words have multiple senses or meanings, and it is generally necessary

to use the context in which a word occurs to determine which of its senses or mean-

ings is meant in a given sentence. Even though TreeRNNs are much more e↵ective

at composing meanings in principle, this ambiguity can give simpler sequence-based

sentence-encoding models an advantage: when a sequence-based model first processes

a word, it has direct access to a state vector that summarizes the left context of that

word, which acts as a cue for disambiguation. In contrast, when a standard tree-

structured model first processes a word, it only has access to the constituent that the

word is merging with, which is often just a single additional word. Feeding a context

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 117

representation from the tracking LSTM into the composition function is a simple and

e�cient way to mitigate this disadvantage of tree-structured models.

It would be straightforward to augment SPINN to support the use of some amount

of right-side context as well, but this would add complexity to the model that we argue

is largely unnecessary: humans are very e↵ective at understanding the beginnings of

sentences before having seen or heard the ends, suggesting that it is possible to get

by without the unavailable right-side context.

7.3.4 Parsing: Predicting transitions

For SPINN to operate on unparsed inputs, it needs to be able to produce its own

transition sequence a rather than relying on an external parser to supply it as part of

the input. To do this, the model predicts the probabilities ~p (t) of each possible action

a(t) at each step using a simple two-class softmax classifier whose input is the state

of the tracking LSTM:

(7.5) ~p (t) = softmax(W
transition

~h
(t)

tracking

+~b
transition

)

The above approach is nearly the simplest viable transition decision function. In

contrast, the decision functions in state-of-the-art transition-based parsers tend to use

significantly richer feature sets as inputs, including features containing information

about several upcoming words on the bu↵er. The value ~h
tracking

is a function of only

the very top of the bu↵er and the top two stack elements at each timestep.

At test time, the model uses whichever transition (i.e. shift or reduce) is as-

signed a higher probability. The prediction function is trained to mimic the decisions

of an external parser, and these decisions are used as inputs to the model during

training. We use binary parse trees from the Stanford PCFG Parser. We did not find

scheduled sampling (Bengio et al. 2015)—allowing the model to use its own transition

decisions in some instances at training time—to help.

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 118

t S[t] Q(t) a(t)

0 shift
1 Spot 1 shift
2 sat 1 2 shift
3 down 1 2 3 reduce
4 (sat down) 1 4 reduce
5 (Spot (sat down)) 5

Table 7.1: The thin-stack algorithm operating on the input sequence x =
(Spot, sat, down) and the transition sequence shown in the last column. S is shown
in the second column and represents the top of the stack at each step t. The last
two elements of Q (underlined) specify which rows t would be involved in a reduce
operation at the next step.

7.3.5 Implementation issues

Representing the stack e�ciently A näıve implementation of SPINN needs to

handle a size O(N) stack at each timestep, any element of which may be involved

in later computations. A näıve backpropagation implementation would then require

storing each of the O(N) stacks for a backward pass, leading to a per-example space

requirement of O(NTD) floats. This requirement is prohibitively large for significant

batch sizes or sentence lengths N . Such a näıve implementation would also require

copying a largely unchanged stack at each timestep, since each shift or reduce

operation writes only one new representation to the top of the stack.

We propose1 a space-e�cient stack representation inspired by the zipper tech-

nique (Huet 1997) that we call thin stack. For each input sentence, the stack is

represented as a single T ⇥D matrix S. Each row S[t] (for 0 < t  T) represents the

top of the stack at timestep t. At each timestep the model can shift a new element

onto the stack, or reduce the top two elements of the stack into a single element.

To shift an element from the bu↵er to the top of the stack at timestep t, it is simply

written into the location S[t]. In order to perform the reduce operation, the top two

elements of the actual stack are retrieved and used. The model maintains a queue Q

of pointers into S which contains the row indices of S which are still present in the

1This method reflects work primarily done by my coauthor Jon Gauthier.

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 119

Algorithm 1 The thin stack algorithm

1: function Step(bu↵erTop, op, t, S, Q)
2: if op = shift then
3: S[t] := bu↵erTop
4: else if op = reduce then
5: right := S[Q.pop()]
6: left := S[Q.pop()]
7: S[t] := Compose(left, right)

8: Q.push(t)

actual stack. The top two elements of the stack can be found by using the final two

pointers in the queue Q. These retrieved elements are used to perform the reduce

operation, which modifies Q to mark that some rows of S have now been replaced

in the actual stack. Algorithm 1 describes the full mechanics of a stack feedforward

in this compressed representation. It operates on the single T ⇥ D matrix S and a

backpointer queue Q. Table 7.1 shows an example run.

This stack representation requires substantially less space. It stores each element

involved in the feedforward computation exactly once, meaning that this represen-

tation can still support e�cient backpropagation. Furthermore, all of the updates

to S and Q can be performed batched and in-place on a GPU, yielding substantial

speed gains over both a more näıve SPINN implementation and a standard TreeRNN

implementation. We describe speed results in Section 7.3.7.

Preparing the data At training time, SPINN requires both a transition sequence

a and a token sequence x as its inputs for each sentence. The token sequence is

simply the words in the sentence in order. a can be obtained from any constituency

parse for the sentence by first converting that parse into an unlabeled binary parse,

then linearizing it (with the usual in-order traversal), then taking each word token as

a shift transition and each ‘)’ as a reduce transition, as here:

Unlabeled binary parse: ((the cat) (sat down))

x: the, cat, sat, down

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 120

a: shift, shift, reduce, shift, shift, reduce, reduce

Handling variable sentence lengths For any sentence model to be trained with

batched computation, it is necessary to pad or crop sentences to a fixed length. We fix

this length at N = 25 words, longer than about 98% of sentences in SNLI. Transition

sequences a are cropped at the left or padded at the left with shifts. Token sequences

x are then cropped or padded with empty tokens at the left to match the number of

shifts added or removed from a, and can then be padded with empty tokens at the

right to meet the desired length N .

7.3.6 TreeRNN equivalence

Without the addition of the tracking LSTM, SPINN (in particular the SPINN-PI-

NT variant, for parsed input, no tracking) is precisely equivalent to a conventional

tree-structured neural network model in the function that it computes, and therefore

also has the same learning dynamics. In both, the representation of each sentence

consists of the representations of the words combined recursively using a TreeRNN

composition function (here, the TreeLSTM function). SPINN, however, is dramati-

cally faster, and supports both integrated parsing and a novel approach to context

through the tracking LSTM.

7.3.7 Inference speed

In this section, we compare the test time speed of the SPINN-PI-NT with an equiv-

alent TreeRNN implemented in the conventional fashion and with a standard RNN

sequence model. While the full models evaluated below are implemented and trained

using Theano (Theano Development Team 2016), which is reasonably e�cient but

not perfect for this model, we wish to compare well-optimized implementations of

all three models. To do this, we reimplement the feedforward2 of SPINN-PI-NT and

an LSTM RNN baseline in C++/CUDA, and compare that implementation with a

2We chose to reimplement and evaluate only the feedforward/inference pass, as inference speed
is the relevant performance metric for most practical applications.

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 121

32 63.99 128 256 512 1,024 2,048
0

5

10

15

20

25

Batch size

F
ee
d
fo
rw

ar
d
ti
m
e
(s
ec
)

CPU (Irsoy & Cardie 2014)
Thin-stack GPU

RNN

Figure 7.3: Feedforward speed comparison.

CPU-based C++/Eigen TreeRNN implementation from Irsoy & Cardie (2014), which

we modified to perform exactly the same computations as SPINN-PI-NT.3 TreeRNNs

like this can only operate on a single example at a time and are thus poorly suited

for GPU computation.

Each model is restricted to run on sentences of 30 tokens or fewer. We fix the

model dimension D and the word embedding dimension at 300. We run the CPU

performance test on a 2.20 GHz 16-core Intel Xeon E5-2660 processor with hyper-

threading enabled. We test the thin-stack implementation and the RNN model on an

NVIDIA Titan X GPU.

Figure 7.3 compares the sentence-encoding speed of the three models on random

input data. We observe a substantial di↵erence in runtime between the CPU and

thin-stack implementations that increases with batch size. With a large but practical

batch size of 512, the largest on which we tested the TreeRNN, SPINN is about 25⇥
faster than the standard CPU implementation, and about 4⇥ slower than the RNN

3The original code for Irsoy & Cardie’s model is available at https://github.com/oir/

deep-recursive. Optimized C++/CUDA models and the Theano source code for the full SPINN
are available at https://github.com/stanfordnlp/spinn.

https://github.com/oir/deep-recursive
https://github.com/oir/deep-recursive
https://github.com/stanfordnlp/spinn

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 122

baseline.

Though this experiment only covers SPINN-PI-NT, the results should be similar

for the full SPINN model: most of the computation involved in running SPINN is in-

volved in populating the bu↵er, applying the composition function, and manipulating

the bu↵er and the stack, with the low-dimensional tracking and parsing components

adding only a small additional load.

7.4 NLI Experiments

We evaluate SPINN on the task of natural language inference using SNLI, and use

FraCaS as a supplementary test set to better understand the results.

Creating a sentence-pair classifier To classify a sentence pair, we run two copies

of SPINN with shared parameters: one on the premise sentence and another on the

hypothesis sentence. We then use their outputs (the ~h states at the top of each stack

at time t = T) to construct a feature vector ~x
classifier

for the pair. This feature vector

consists of the concatenation of these two sentence vectors, their di↵erence, and their

elementwise product (following Mou et al. 2016b):

(7.6) ~x
classifier

=

2

66664

~h
premise

~h
hypothesis

~h
premise

� ~h
hypothesis

~h
premise

� ~h
hypothesis

3

77775

Following the general approach presented in Section 2.3.4, this feature vector is then

passed to a series of 1024D ReLU neural network layers (i.e. an MLP; the number

of layers is tuned as a hyperparameter), then passed into a linear transformation,

and then finally passed to a softmax layer, which yields a distribution over the three

labels.

The objective function The objective combines a cross-entropy objective L
s

for

the NLI classification task, cross-entropy objectives Lt
p

and Lt
h

for the parsing decision

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 123

for each of the two sentences at each step t, and an L2 regularization term on the

trained parameters. The terms are weighted using the tuned hyperparameters ↵ and

�:

(7.7) L
m

= L
s

+ ↵

T�1X

t=0

(Lt
p

+ Lt
h

) + �k✓k2
2

Initialization, optimization, and tuning We initialize the model parameters

using the nonparametric strategy of He et al. (2015), with the exception of the soft-

max classifier parameters, which we initialize using random uniform samples from

[�0.005, 0.005].

We use minibatch SGD with the RMSProp optimizer (Tieleman & Hinton 2012)

and a tuned starting learning rate that decays by a factor of 0.75 every 10K steps. We

apply both dropout (Srivastava et al. 2014) and batch normalization (Io↵e & Szegedy

2015) to the output of the word embedding projection layer and to the feature vectors

that serve as the inputs and outputs to the MLP that precedes the final entailment

classifier.

We train each model for 250K steps in each run, using a batch size of 32. We track

each model’s performance on the development set during training and save parameters

when this performance reaches a new peak. We use early stopping, evaluating on the

test set using the parameters that perform best on the development set.

We use random search to tune the hyperparameters of the model, setting the

ranges for search for each hyperparameter heuristically (and validating the reason-

ableness of the ranges on the development set), and then launching eight copies of each

experiment each with newly sampled hyperparameters from those ranges. Table 7.2

shows the hyperparameters used in the best run of each model.

7.4.1 Models evaluated

We evaluate five models. The five all use the sentence-pair classifier architecture

described in Section 7.4, and di↵er only in the function computing the sentence en-

codings. First, a sum-of-words model and a single-layer LSTM RNN (built on the one

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 124

Param. Range Samp. Sum RNN PI-NT PI SP

Init. LR 2⇥ 10�4–2⇥ 10�2 log 8⇥ 10�3 5⇥ 10�3 3⇥ 10�4 7⇥ 10�3 2⇥ 10�3

� 1⇥ 10�7–3⇥ 10�5 log 1⇥ 10�7 4⇥ 10�6 3⇥ 10�6 2⇥ 10�5 3⇥ 10�5

↵ 0.5–4.0 lin — — — — 3.9
ET dr. 80–95% lin — — 83% 92% 86%
MLP dr. 80–95% lin 88% 94% 94% 93% 94%
Dtracking 24–128 log — — — 61 79
MLP lrs. 1–3 lin 2 2 2 2 1

Table 7.2: Hyperparameter ranges and values. Range shows the hyperparameter
ranges explored during random search. Samp. indicates whether sampling from the
range was uniform (lin), or log-uniform (log). Init. LR is the starting learning rate
for RMSProp. � is the L2 regularization weight. ↵ is the transition cost scaling
weight. ET dr. is the dropout keep rate for the embedding transformation layer.
MLP dr. is the dropout keep rate for the classifier MLP. D

tracking

is the size of the
tracking LSTM state. MLP lrs. is the number of layers in the classifier MLP.

presented in Chapter 6) serve as baseline encoders. Next, the minimal SPINN-PI-NT

model (equivalent to a TreeLSTM) introduces the SPINN model design. SPINN-PI

adds the tracking LSTM to that design. Finally, the full SPINN adds the integrated

parser.

We compare these models against several baselines, including the strongest pub-

lished non-neural network-based result from Chapter 6 and previous neural network

models built around several types of sentence encoders.

7.4.2 Results

Table 7.3 shows our results on SNLI. For the full SPINN, we also report a measure of

agreement between this model’s parses and the parses included with SNLI, calculated

as classification accuracy over transitions averaged across time steps.

We find that the bare SPINN-PI-NT model performs little better than the RNN

baseline, but that SPINN-PI with the added tracking LSTM performs well, surpassing

all prior work on sentence encoding (and, as of writing, all subsequent such work but

the unpublished Liu et al. 2016). The success of SPINN-PI, which is a hybrid tree–

sequence model, suggests that the tree- and sequence-based encoding methods are at

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 125

Model Params. Trans. (%) Train (%) Test (%)

Previous non-NN results

Lexicalized classifier (Chapter 6) — — 99.7 78.2

Previous sentence encoder-based NN results

100D LSTM encoders (Chapter 6) 220K — 84.8 77.6
1024D pretrained GRU encoders1 15M — 98.8 81.4
300D Tree-based CNN encoders2 3.5M — 83.4 82.1

New results

300D sum-of-words encoders 2.3M — 77.8 77.2
300D LSTM RNN encoders 3.0M — 83.9 80.6
300D SPINN-PI-NT encoders 3.4M — 84.4 80.9
300D SPINN-PI encoders 3.7M — 89.2 83.2

300D SPINN encoders 2.7M 92.4 87.2 82.6

Table 7.3: Results on SNLI 3-way inference classification. Params. is the approx-
imate number of trained parameters (excluding word embeddings for all models).
Trans. acc. is the model’s accuracy in predicting parsing transitions at test time.
Train and test are SNLI classification accuracy. External results are from 1Vendrov
et al. (2016) and 2Mou et al. (2016b).

least partially complementary. The full SPINN model with its relatively weak internal

parser performs slightly less well, but nonetheless robustly exceeds the performance

of the RNN baseline. The sum-of-words model, while better than the smaller such

model tested in Chapter 6, lags behind considerably.

Both SPINN-PI and the full SPINN significantly outperform all previous sentence-

encoding models. Most notably, these models outperform the tree-based CNN of Mou

et al. (2016b), which also uses tree-structured composition for local feature extrac-

tion, but uses simpler pooling techniques to build sentence features in the interest of

e�ciency. The results show that a model that uses tree-structured composition fully

(SPINN) outperforms one which uses it only partially (tree-based CNN), which in

turn outperforms one which does not use it at all (RNN).

The full SPINN performed moderately well at reproducing the Stanford Parser’s

parses of the SNLI data at a transition-by-transition level, with 92.4% accuracy at test

time. However, its transition prediction errors were fairly evenly distributed across

sentences, and most sentences were assigned partially invalid transition sequences that

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 126

102 103 104 105
35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

Training Examples

A
cc
u
ra
cy

300D SPINN-PI
300D SPINN

300D SPINN-PI-NT
300D RNN

300D Sum of words
Lexicalized

Figure 7.4: Test set performance for the models discussed in this chapter and the
lexicalized classifier baseline from Chapter 6, shown at high resolution to highlight
small di↵erences.

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 127

either left a few words out of the final representation or incorporated a few padding

tokens into the final representation.

Figure 7.4 shows how model performance changes as the models are trained on

decreasing amounts of training data. For the experiments reflected in this learning

curve, the tuned hyperparameter values are held constant, and all models are tested

on the full SNLI test set. We observe that all models improve with increasing amounts

of training data, and that none is close to saturation at the 550K-example training

set size that the full SNLI corpus provides. We also observe that the RNN baseline

performs somewhat worse than the richer models when less training data is available,

with its performance only beginning to match that of the tree-structured SPINN-PI-

NT at the full 550K examples.

7.4.3 Testing on FraCaS

Although the style of inferences that SNLI focuses on is quite di↵erent from the style

of inferences studied in most previous work on natural logic, it is possible that the

models under study in this chapter may have nonetheless learned some approximation

of the latter, more directly logic-based, style of inference. To investigate that, I

evaluate these models on the FraCas test suite (Cooper et al. 1996), allowing for

a direct comparison with the NatLog implementation of natural logic (MacCartney

2009), which was developed and tested primarily on this corpus.

FraCas is intended only as a test set, and its small size leaves no room to set aside

examples for training or tuning models. As such, I use models trained on SNLI with

no further training or fine tuning on the target domain. This is a necessary compro-

mise when working with FraCas with data-intensive models, but it does put these

models at a disadvantage, both because of the mismatch in style between the corpora

and because the definition of the output labels (entailment, contradiction, and

neutral) do not align exactly across the two.

The original release of FraCas is targeted at question-answering systems. For this

evaluation, I use the modified version prepared by MacCartney (2009) which converts

the question–answer pairs to three-label NLI problems. Like MacCartney, I discard

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 128

Section 1: Quantifiers

(7.8) Premise: No delegate finished the report.
Hypothesis: Some delegate finished the report on time.
Label: contradiction

Section 2: Plurals

(7.9) Premise: Either Smith, Jones or Anderson signed the contract.
Hypothesis: Jones signed the contract.
Label: neutral

Section 3: (Nominal) Anaphora

(7.10) Premise: John said Bill had hurt himself.
Hypothesis: Someone said John had been hurt.
Label: neutral

Figure 7.5: Examples from FraCas. Note that (7.10) is labeled neutral, even though
a natural extension of the SNLI label definitions to sentences like these would suggest
a more likely label of contradiction.

multiple-premise examples and the handful of examples which are not assigned to one

of the three standard labels.

FraCas is divided into nine sections. Each is meant to cover one narrow set of

phenomena in NLI using a handful of expect-constructed inference problems over a

formal, business-oriented register of English. Figure 7.5 shows examples from the first

three sections of the corpus.

Table 7.4 shows the results of this evaluation, presented alongside results with Nat-

Log from MacCartney (2009). No system performs well in absolute terms, though

NatLog performs dramatically better overall, with the neural network models lagging

behind by a gap of greater than 10% absolute. Looking at individual sections, Nat-

Log performs best in most, including all of the sections that MacCartney marked as

highlighting the strengths of his instantiation of natural logic, while neural models

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 129

Section # Sum LSTM PI-NT PI SP NatLog

1. Quantifiers* 44 57% 64% 61% 64% 66% 98%

2. Plurals* 24 50% 54% 67% 46% 42% 75%

3. (Nominal) Anaphora 6 83% 67% 67% 67% 83% 50%
4. Ellipsis 25 68% 64% 64% 48% 44% 24%
5. Adjectives* 15 40% 47% 33% 40% 40% 80%

6. Comparatives* 16 63% 56% 31% 38% 56% 81%

7. Temporal Reference 36 44% 44% 56% 53% 39% 58%

8. Verbs 8 63% 63% 38% 63% 63% 63%

9. Attitudes* 9 67% 67% 44% 33% 44% 89%

All Sections 183 55% 57% 55% 51% 51% 71%

Table 7.4: Results on the FraCas test suite with the five models discussed above
(PI-NT=SPINN-PI-NT, PI=SPINN-PI, SP=SPINN) and with MacCartney’s (2009)
NatLog. MacCartney noted that Sections 1, 2, 5, 6, and 9 (marked with *) highlight
the strengths of his natural logic.

perform as well or better at Anaphora, Ellipsis, Temporal Reference, and Verbs. Per-

formance in individual sections, though, provides only a very weak signal to model

quality and is easily misinterpreted. Sections generally contain variants of only a few

sentence types, leading to the potential for extremely high variance in model perfor-

mance. It is striking and somewhat mysterious that performance on FraCas test data

by the five neural models appears to be weakly inversely correlated with performance

on the in-domain SNLI test set by the same models.

These negative results should not be surprising in light of what we know about

both SNLI and neural network models in general. While an ideal NLI model would be

able to recognize inferences of a broad range of styles across a broad range of genres

of text, SNLI is not designed to be the sole training corpus for such a model. It is

restricted to the genre of captions and to the kinds of inferences encouraged by the task

framing presented to the annotators (Figure 5.1). In addition, an empirical evaluation

has shown that standard cross-domain transfer techniques for neural networks, which

would be needed for success here, are not especially e↵ective for sentence-encoding

models like these (Mou et al. 2016a). In an e↵ort to better understand the ability of

the SPINN models (and the LSTM RNN) to e↵ectively model its target domain, the

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 130

following section presents an in-depth analysis of the performance of these models on

SNLI.

7.4.4 Analysis and discussion

The use of tree structure improves the performance of sentence-encoding models for

SNLI. I suspect that this improvement is largely due to the more e�cient learning of

accurate generalizations overall, and not to any particular few phenomena. However,

some patterns are identifiable in the results.

While all five models under study have trouble with negation, the tree-structured

SPINN models do quite substantially better on these pairs. This is likely due to the

fact that parse trees make the scope of any instance of negation (the portion of the

sentence’s content that is negated) relatively easy to identify and separate from the

rest of the sentence. For test set sentence pairs like the one below where negation

(not or n’t) does not appear in the premise but does appear in the hypothesis, the

RNN shows 67% accuracy, while all three tree-structured models exceed 73%. Only

the RNN and sum-of-words models got the below example wrong.

(7.11) Premise: A man dressed in a light blue shirt dumping items from a bin

into another bin, while standing in a room full of food donations.

Hypothesis: Foods are not stored in room by a man.

Label: contradiction

Note that the presence of negation in the hypothesis is correlated with a label of

contradiction in SNLI, but not as strongly as one might intuit: only 45% of these

examples in the test set are labeled as contradictions.

In addition, it seems that tree-structured models, and especially the tree–sequence

hybrid models, are more e↵ective than RNNs at extracting informative representa-

tions of long sentences. The RNN model falls o↵ in test accuracy more quickly with

increasing sentence length than SPINN-PI-NT, which in turn falls o↵ substantially

faster than the two hybrid models, repeating a pattern seen more dramatically on

artificial data in Chapter 4. On pairs with premises of 20 or more words, the RNN

reaches 76.7% accuracy, while SPINN-PI reaches 80.2%. All three SPINN models

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 131

labeled the following example correctly, while the RNN and sum-of-words models did

not.

(7.12) Premise: A man wearing glasses and a ragged costume is playing a Jaguar

electric guitar and singing with the accompaniment of a drummer.

Hypothesis: Two men are playing on a street corner.

Label: neutral

I suspect that the hybrid nature of the full SPINN model is also responsible for

its surprising ability to perform better than an RNN baseline even when its internal

parser is relatively ine↵ective at producing correct full-sentence parses. It may act

somewhat like the tree-based CNN, only with access to larger trees: using tree struc-

ture to build up local phrase meanings, and then using the tracking LSTM, at least

in part, to combine those meanings.

Finally, as is likely inevitable for models evaluated on SNLI, all five models under

study did several percent worse on test examples whose ground truth label is neutral

than on examples of the other two classes. Entailment–neutral and neutral–

contradiction confusions appear to be much harder to avoid than entailment–

contradiction confusions, where relatively superficial cues might be more readily

useful.

The following few sections provide some more detailed quantitative analysis to

elaborate upon the above impressions.

Commonsense premises Table 7.5 shows the performance of the five models un-

der study on the 49 examples (from the sample of 100 test examples introduced in

Section 5.4.2) that I manually tagged as requiring some form of commonsense back-

ground knowledge. Learning a reasonable model of common sense over the domain of

situations described in Flickr30K captions is part of the challenge of learning to model

SNLI, and these examples highlight the ability of each model to do this. However, this

challenge is largely orthogonal to the primary goal of learning a high-quality model

of sentence meaning. All five models under study do dramatically worse on these

examples than on the test set overall, reflecting the fact that none of them has access

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 132

Test set # Sum LSTM SPINN-PI-NT SPINN-PI SPINN

Common sense 49 59% 65% 63% 67% 69%

Table 7.5: Results on manually tagged SNLI test examples that require commonsense
background knowledge.

Test set # Sum LSTM SPINN-PI-NT SPINN-PI SPINN

Lexical 28 57% 64% 68% 71% 64%

Table 7.6: Results on manually tagged SNLI test examples that require lexical relation
knowledge.

to a high-quality source of commonsense background knowledge, nor any especially

e↵ective mechanism for extracting such knowledge from either GloVe or the SNLI

training set. Integrating knowledge of this kind into models remains a substantial

open problem in NLI and in NLP more broadly.

Lexical relations Table 7.6 shows the performance of the five models under study

on the 28 examples that I manually tagged as crucially requiring knowledge of a

specific lexical relation. All five models do substantially worse on these examples than

they do on the test set overall. While Section 3.3 shows that similar neural network

models can learn to encode a rich set of lexical relations e↵ectively, it appears that

the models under study in this chapter do not have access to high-quality information

about lexical entailment and exclusion. Unlike in the artificial language experiments,

Zipf’s law ensures that any natural language test set will contain many word pairs

that are unattested or only rarely attested in the training set. Because of that, the

models here are forced to rely on the information that is present in GloVe rather

than simply relying on its own learned lexical representations. While it is possible to

extract a good deal of information about lexical entailment from distributional word

vectors like GloVe (Kotlerman et al. 2010, Shwartz et al. 2016), this information

appears to be incomplete and di�cult to use, and existing systems have not been

able to approach the near-perfect precision that would be necessary to make SNLI

examples like these easy.

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 133

Premise len. # Sum LSTM SPINN-PI-NT SPINN-PI SPINN

0–10 2610 80.2% 83.1% 82.8% 84.8% 83.3%
11–14 2798 78.6% 81.8% 81.5% 83.5% 82.8%
15–19 2096 76.9% 80.4% 81.0% 84.3% 82.7%
20+ 2320 72.5% 76.7% 77.9% 80.2% 78.3%

Table 7.7: Results on SNLI test examples by premise length.

Root tags # Sum LSTM SPINN-PI-NT SPINN-PI SPINN

NP–NP 378 81.0% 83.6% 82.8% 85.7% 84.4%
S–NP & NP–S 2762 79.1% 81.4% 82.1% 84.8% 82.9%
S–S 6684 76.2% 80.1% 80.3% 82.5% 81.3%

Table 7.8: Results on SNLI test examples by root tags.

Length As introduced above, the SPINN models appear to be somewhat better

than the baseline models on long sentences. Table 7.7 demonstrates this, dividing the

SNLI test set into four bins by premise length (rather than hypothesis length, which

has a much lower variance).

S vs. NP Table 7.8 shows the performance of the five models under study on three

classes of test set example: sentence–sentence pairs, sentence–noun phrase pairs,

and noun phrase–noun phrase pairs. Both the RNN and the syntax-sensitive SPINN

models have an easier time with the relatively simpler (but still non-trivial) structures

of bare noun phrases, even despite their relatively low frequency in the corpus. The

advantage of the hybrid SPINN models over the RNN persists even on these examples.

Negation Table 7.8 shows the performance of the five models under study on ex-

amples where not or n’t is present in the hypothesis but not the premise. These

relatively di�cult examples, discussed in Section 5.4, highlight the models’ ability

to reason e↵ectively with negation. As reported above, all five models struggle with

these examples, but the RNN has a substantially harder time than the three tree-

based SPINN models.

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 134

Test set # Sum LSTM SPINN-PI-NT SPINN-PI SPINN

Negation 141 64% 67% 74% 74% 75%

Table 7.9: Results on SNLI test examples with negation (not, n’t) in the hypothesis
but not the premise.

Test set # Sum LSTM SPINN-PI-NT SPINN-PI SPINN

Deletion only 246 92% 95% 95% 95% 93%
Insertion only 57 88% 88% 89% 89% 91%

Table 7.10: Results on SNLI test examples where the word types in the hypothesis
are a strict subset (deletion only) or a strict superset (insertion only) of the words
types in the premise.

Pure insertion and pure deletion examples As I observe in Section 5.4, sen-

tences where the hypothesis di↵ers from the premise either only through deletions or

only through insertions are among the easiest examples in the corpus, with the former

consisting almost entirely of entailments, and the latter largely of neutral examples.

Table 7.10 shows that all five models are able to take advantage of this property, and

do substantially better on these examples than on the test set as a whole.

7.5 Conclusion and future work

In this chapter, we introduce a model architecture (SPINN-PI-NT) that is equivalent

to a TreeLSTM, but an order of magnitude faster at test time. We expand that

architecture into a tree–sequence hybrid model (SPINN-PI), and show that this yields

significant gains on the SNLI entailment task. Finally, we show that it is possible

to exploit the strengths of this model without the need for an external parser by

integrating a fast parser into the model (as in the full SPINN), and that the lack of

external parse information yields little loss in accuracy.

Because this dissertation is focused on general-purpose models for sentence en-

coding, I do not pursue the use of soft attention (Bahdanau et al. 2015, Rocktäschel

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 135

et al. 2016), despite its demonstrated e↵ectiveness on the SNLI task.4 However, I

expect that it should be possible to productively combine SPINN with soft attention

to reach state-of-the-art performance.

The tracking LSTM uses only simple, quick-to-compute features drawn from the

head of the bu↵er and the head of the stack. It is plausible that giving the tracking

LSTM access to more information from the bu↵er and stack at each step would allow

it to better represent the context at each tree node, yielding both better parsing and

better sentence encoding. One promising way to pursue this goal would be to encode

the full contents of the stack and bu↵er at each time step following the method used

by Dyer et al. (2015).

Removing the parsing objective For a more ambitious goal, I expect that it

should be possible to implement a variant of SPINN that learns to parse using guid-

ance from the semantic representation objective, essentially allowing it to learn to

produce parses that are, in aggregate, better suited to supporting semantic interpre-

tation than those supplied in the training data. This has the promise both to yield

a sentence-encoding model that is more e↵ective than any presently available, and in

addition to yield potentially powerful new way of testing hypotheses about the role

of syntax in human language understanding.

Learning to parse from a purely semantic objective is not possible in these models

as currently implemented, at least using standard gradient-based learning as we do

here. This is because the decision to shift or reduce at any timestep is a hard

decision, leaving no way for gradient information to pass back through this decision

to inform the transition classifier that it would have been better o↵ had it made a

di↵erent decision. There are two ways around this obstacle: reinforcement learning

and the use of a di↵erentiable (or soft) stack.

Reinforcement learning would have the model explicitly explore multiple di↵erent

parses at training time, and to learn to choose parses that tend to result in correct

semantic classifications. This approach is likely to be slow and unstable, but progress

4Attention-based models like Rocktäschel et al. (2016), Wang & Jiang (2016), and the unpub-
lished Cheng et al. (2016) have shown accuracies as high as 86.3% on SNLI, but are more narrowly
engineered to suit the task and do not yield sentence encodings.

CHAPTER 7. A FAST UNIFIED PARSER-INTERPRETER 136

in reinforcement learning with neural network models has been rapid in recent years

(e.g. Mnih et al. 2015), and it should be possible to take advantage of much of this

progress.

A di↵erentiable stack would directly remove the source of the problem, the hard

shift/reduce decision. With a di↵erentiable stack, the model would be able to

perform an operation that is a blend of 91% shift and 9% reduce at training time,

allowing the gradient to reflect the relative quality of choosing either option. It is not

obvious a priori that simply additively combining the results of a shift operation and

a reduce operation would lead to usable representations and reasonable classification

performance, but Joulin & Mikolov (2015) have shown that a strategy like this can

be used e↵ectively on small toy problems. In addition, Grefenstette et al. (2015)

have proposed a novel soft stack design that is explicitly designed to produce usable

representations in gradient based learning.

Chapter 8

Conclusion

This dissertation presents three major contributions to the applications of neural

network models to sentence-level language understanding. Chapters 3 and 4 show

that existing neural network architectures are capable of learning to perform complex

symbolic reasoning in controlled settings, despite their continuous representations and

weak prior knowledge. Chapters 5 and 6 present SNLI, a corpus targeted at training

and evaluating sentence-understanding models that is by far the largest of its kind

and has become a major benchmark for research in this area. Chapter 7 introduces

SPINN, an extension of the recursive neural network architecture that both improves

its strength as a learner and makes it practical for use on large-scale language learning

tasks.

8.1 The contributions of this dissertation

Chapter 1 introduces the relational view of semantics, both in the context of semantic

theory and in the context of natural language inference and applied computational

semantics. It then goes on to discuss the relationship between this view and issues of

semantic representation, and contrasts that view with the prevailing truth-conditional

approach to natural language meaning. With that context in place, it o↵ers a sum-

mary of the goals of this dissertation.

Chapter 2 provides the technical foundations for the dissertation, laying out the

137

CHAPTER 8. CONCLUSION 138

fundamentals of natural logic, neural networks, and sentence-encoding models, and

discussing prior work at the intersection of logic, formal semantics, and distributed

representation modeling.

Chapter 3 uses artificial language learning experiments to investigate a funda-

mental tension that arises when using neural networks to model natural language

semantics: while neural network models can only learn e↵ectively when using fully

continuous distributed representations, we know that language has a rich discrete

symbolic structure that is di�cult to capture precisely in a continuous setting. The

experiments in this chapter show that this is not an obstacle in practice, at least in

the domain of NLI: existing neural network models are capable of learning to per-

form several of the kinds of symbolic reasoning that are necessary for NLI, including

learning a structured lexicon, reasoning with recursive grammars, and reasoning with

quantification and monotonicity.

Chapter 4 extends these artificial language methods to address a narrower but

still pressing question within the application of neural networks to natural language

semantics: what is the value, if any, of integrating knowledge of the syntactic structure

of natural languages into the architectures of models? I find that while models that

do not incorporate tree structure show some basic ability to learn languages with

a known syntactic structure, tree-structured models are dramatically more e↵ective,

suggesting that tree structure should be valuable in building sentence understanding

models for natural language.

Chapter 5 presents SNLI, a human-annotated corpus for NLI. At 570K exam-

ples, the corpus is nearly two orders of magnitude larger than the largest preexisting

human-annotated NLI corpus, making it uniquely suited for the training and evalu-

ation of low-bias machine learning models like neural networks.

Chapter 6 uses both novel and existing baseline models to situate SNLI as an

evaluation dataset among other NLI corpora. Additionally, it shows for the first

time that a simple sequence-based neural network model can be trained to reach

strong performance on NLI. In the year since the release of the corpus and these

results, SNLI has quickly become a major testing ground for neural network models

of sentence understanding.

CHAPTER 8. CONCLUSION 139

Finally, Chapter 7 introduces SPINN, a novel model architecture for sentence en-

coding which builds on the lessons of Chapters Chapter 3 and Chapter 4. The SPINN

model draws on ideas from shift-reduce parsing to implement the core computations

of a tree-structured neural network within a radically di↵erent model structure. This

improves on that existing architecture in three ways. First, it makes it possible to

train a tree-structured model using batched computation, yielding order-of-magnitude

speed increases and making it possible for the first time to train these models on large-

scale tasks like SNLI. In addition, it allows for the ready integration of local context

information into the process of semantic composition, allowing the model to produce

sentence representations that surpass the prior state of the art on SNLI. Finally,

the model adds the capability to parse sentences as it interprets them, breaking the

dependence on an external parser.

8.2 Future work

8.2.1 Symbolic reasoning and sentence encoding

Chapters 3 and 4 reveal that existing models are e↵ective at learning symbolic reason-

ing in many domains. There is straightforwardly more work to do to better understand

the limits of these abilities: Are there any behaviors from natural logic that cannot

be learned from reasonable amounts of training data? Is it possible to accurately pre-

dict how much data a model will need in order to be able to learn a given reasoning

pattern? Further experiments of the kind presented in these chapters should yield

answers to questions of this kind.

In addition, these chapters demonstrate that artificial neural network models can

be e↵ective at simulating inference in a simple but nontrivial formal logic. It would

be valuable to better understand the limits of this ability for logical systems more

generally, and how closely these limits track known lower bounds on complexity for

inference.

Finally, di�cult questions remain about the ways in which neural network models

like these represent symbolic data: Do notions like entailment or contradiction have

CHAPTER 8. CONCLUSION 140

any geometric interpretations within the semantic spaces induced by these models?

How do complex function words like quantifiers act on their arguments within the

highly limited composition functions that are available to these models? Neither

the theory of natural logic nor any existing tools for neural network analysis have

yet o↵ered any clear insights on these questions, or even any clear directions for

research. Producing substantial human-interpretable results about the structures of

these representations will require creative new methods for analysis, but to do so

could yield substantial improvements to the design and training of these models.

8.2.2 Data for natural language inference

Chapter 5 introduces the first large-scale human-annotated corpus for NLI, but this

corpus only contains sentences that come from a single constrained genre of text:

image captions. My new data collection strategy required the use of captions, but

this genre limits the applications of the corpus. There are many phenomena like tense,

aspect, reported beliefs, and conditionals that appear frequently in open domain text,

but rarely if ever in captions. This makes it impractical to use SNLI as the primary

training corpus for models that are meant to be able to operate on open-domain text,

and while this was not a major goal in the creation of SNLI, there would be clear

value in a multiple-genre training corpus. More crucially, this choice of a single genre

limits SNLI’s value for its intended use as a means of evaluating sentence-encoding

models. It is possible that a model could do well on SNLI without being able to

learn to reason e↵ectively with tense or aspect, and the only way to circumvent this

weakness of SNLI is to develop new techniques to enable the collection of high quality

inference corpora for new genres of text.

8.2.3 Using tree structure in sentence encoding

Chapter 7’s introduction of SPINN leaves open two promising directions for future

work. SPINN’s tree–sequence hybrid model is demonstrably e↵ective as a way of

incrementally constructing sentence encodings, and soft attention—a technique I have

not yet explored—is demonstrably e↵ective as a way of reasoning over sentence pairs

CHAPTER 8. CONCLUSION 141

using intermediate representations from sentence-encoding models. Combining the

two should be straightforward and e↵ective. In a more ambitious direction, it should

be possible to adapt the design of the model to make it possible to learn to parse using

only the supervision signal from a semantic task like SNLI without any explicit parsing

supervision. In the best case, this would make it possible to learn novel semantically

optimal parsing formalisms, yielding both better model performance and new sources

of insight into the role of syntax in semantic interpretation.

8.2.4 The future of learned models for sentence meaning

To take a broader perspective, the techniques explored in this dissertation require

accurate training data for a semantic task in order to learn to do that task. It is

possible to find or collect usable data for many NLP tasks, at least in well-studied

high-resource languages like English, but this need for data presents a major obsta-

cle to building e↵ective systems for more minor tasks or for any of the thousands

of currently-spoken lower-resource languages. Building high-quality general-purpose

neural networks for sentence understanding in these settings will ultimately require

substantial progress in the areas of unsupervised learning—or learning from data with-

out task-specific labels—and transfer learning—adapting learned knowledge from one

task or language to another.

The positive results in this dissertation on both artificial and natural language data

suggest that neural network models are broadly capable of learning e↵ective repre-

sentations for natural language meaning and that models that make use of syntactic

structure can be both fast and e↵ective. With further research into the directions

named here and others, the future is bright for these models both as solutions to

major open problems in NLP and as new models for better understanding the nature

of human language and human language learning.

Bibliography

Aho, Alfred V. & Je↵rey D. Ullman. 1972. The theory of parsing, translation, and

compiling. Upper Saddle River, NJ: Prentice-Hall, Inc.

Angeli, Gabor & Christopher D. Manning. 2014. NaturalLI: Natural logic inference

for common sense reasoning. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), 534–545. Doha, Qatar: Asso-

ciation for Computational Linguistics.

Bahdanau, Dzmitry, Kyunghyun Cho & Yoshua Bengio. 2015. Neural machine trans-

lation by jointly learning to align and translate. In Proceedings of the international

conference on learning representations (ICLR).

Bankova, Desislava, Bob Coecke, Martha Lewis & Daniel Marsden. 2016. Graded

entailment for compositional distributional semantics. In Proceedings of the 13th

international conference on quantum physics and logic.

Baroni, Marco, Ra↵aela Bernardi & Roberto Zamparelli. 2014. Frege in space: A

program of compositional distributional semantics. Linguistic Issues in Language

Technology (LiLT) 9. 241–346.

Bengio, Samy, Oriol Vinyals, Navdeep Jaitly & Noam Shazeer. 2015. Scheduled

sampling for sequence prediction with recurrent neural networks. In Advances in

neural information processing systems (NIPS), 1171–1179.

Bengio, Yoshua, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin & Jean-Luc

Gauvain. 2006. Neural probabilistic language models. In Innovations in machine

learning, 137–186. New York, NY: Springer.

van Benthem, Johan. 2008. A brief history of natural logic. In M. Chakraborty,

B. Löwe, M. Nath Mitra & S. Sarukki (eds.), Logic, Navya-Nyaya and applications:

142

BIBLIOGRAPHY 143

Homage to Bimal Matilal, London: College Publications.

Blackburn, Patrick & Johan Bos. 2005. Representation and inference for natural

language. Stanford, CA: CSLI Publications.

Bordes, Antoine, Nicolas Usunier, Sumit Chopra & Jason Weston. 2016. Large-

scale simple question answering with memory networks. http://arxiv.org/abs/

1506.02075.

Bos, Johan & Katja Markert. 2005. Recognising textual entailment with logical

inference. In Proceedings of human language technology conference and conference

on empirical methods in natural language processing (HLT-EMNLP), 628–635.

Vancouver, Canada: Association for Computational Linguistics.

Bowman, Samuel R., Gabor Angeli, Christopher Potts & Christopher D. Manning.

2015a. A large annotated corpus for learning natural language inference. In Pro-

ceedings of the 2015 conference on empirical methods in natural language process-

ing (EMNLP), 632–642. Lisbon, Portugal: Association for Computational Lin-

guistics.

Bowman, Samuel R., Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D.

Manning & Christopher Potts. 2016. A fast unified model for parsing and sentence

understanding. In Proceedings of the 54th annual meeting of the Association for

Computational Linguistics (ACL), Berlin, Germany: Association for Computa-

tional Linguistics.

Bowman, Samuel R., Christopher D. Manning & Christopher Potts. 2015b. Tree-

structured composition in neural networks without tree-structured architectures.

In Proceedings of the 2015 NIPS workshop on cognitive computation: Integrating

neural and symbolic approaches, Montreal, Canada.

Bowman, Samuel R., Christopher Potts & Christopher D. Manning. 2015c. Learning

distributed word representations for natural logic reasoning. In Knowledge rep-

resentation and reasoning: Integrating symbolic and neural approaches: Papers

from the 2015 AAAI spring symposium, 10–13. Stanford, CA: AAAI.

Bowman, Samuel R., Christopher Potts & Christopher D. Manning. 2015d. Recursive

neural networks can learn logical semantics. In Proceedings of the 3rd workshop on

continuous vector space models and their compositionality, 12–21. Beijing, China:

http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1506.02075

BIBLIOGRAPHY 144

Association for Computational Linguistics.

Buys, Jan & Phil Blunsom. 2015. Generative incremental dependency parsing with

neural networks. In Proceedings of the 53rd annual meeting of the Association for

Computational Linguistics and the 7th international joint conference on natural

language processing (ACL-IJCNLP), volume 2: Short papers, 863–869. Beijing,

China: Association for Computational Linguistics.

Chen, Danqi & Christopher Manning. 2014. A fast and accurate dependency parser

using neural networks. In Proceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP), 740–750. Doha, Qatar: Association for

Computational Linguistics.

Chen, Danqi, Richard Socher, Christopher D. Manning & Andrew Y. Ng. 2013. Learn-

ing new facts from knowledge bases with neural tensor networks and semantic word

vectors. In Proceedings of the international conference on learning representations

(ICLR).

Cheng, Jianpeng, Li Dong &Mirella Lapata. 2016. Long short-term memory-networks

for machine reading. http://arxiv.org/abs/1601.06733.

Chklovski, Timothy & Patrick Pantel. 2004. VerbOcean: Mining the web for fine-

grained semantic verb relations. In Dekang Lin & Dekai Wu (eds.), Proceedings of

EMNLP 2004, 33–40. Barcelona, Spain: Association for Computational Linguis-

tics.

Cho, Kyunghyun, Bart van Merr̈ıenboer, Dzmitry Bahdanau & Yoshua Bengio. 2014a.

On the properties of neural machine translation: Encoder–decoder approaches.

In Proceedings of SSST-8, eighth workshop on syntax, semantics and structure

in statistical translation, 103–111. Doha, Qatar: Association for Computational

Linguistics.

Cho, Kyunghyun, Bart van Merr̈ıenboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk & Yoshua Bengio. 2014b. Learning phrase representa-

tions using RNN encoder–decoder for statistical machine translation. In Proceed-

ings of the 2014 conference on empirical methods in natural language processing

(EMNLP), 1724–1734. Doha, Qatar: Association for Computational Linguistics.

Clark, Stephen, Bob Coecke & Mehrnoosh Sadrzadeh. 2013. The Frobenius anatomy

http://arxiv.org/abs/1601.06733

BIBLIOGRAPHY 145

of relative pronouns. In András Kornai & Marco Kuhlmann (eds.), Proceedings

of the 13th meeting on the mathematics of language (MoL), Sofia, Bulgaria: As-

sociation for Computational Linguistics.

Clarke, Daoud. 2012. A context-theoretic framework for compositionality in distri-

butional semantics. Computational Linguistics 38(1). 41–71.

Coecke, Bob, Mehrnoosh Sadrzadeh & Stephen Clark. 2011. Mathematical foun-

dations for a compositional distributed model of meaning. Linguistic Analysis

36(1–4). 345–384.

Collobert, Ronan, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu

& Pavel Kuksa. 2011. Natural language processing (almost) from scratch. Journal

of Machine Learning Research (JMLR) 12(Aug). 2493–2537.

Condoravdi, Cleo, Dick Crouch, Valeria de Paiva, Reinhard Stolle & Daniel G. Bo-

brow. 2003. Entailment, intensionality and text understanding. In Graeme Hirst

& Sergei Nirenburg (eds.), Proceedings of the HLT-NAACL 2003 workshop on text

meaning, 38–45.

Conneau, Alexis, Holger Schwenk, Löıc Barrault & Yann Lecun. 2016. Very deep

convolutional networks for natural language processing. http://arxiv.org/abs/

1606.01781.

Cooper, Robin, Dick Crouch, Jan Van Eijck, Chris Fox, Johan Van Genabith, Jan

Jaspars, Hans Kamp, David Milward, Manfred Pinkal, Massimo Poesio et al. 1996.

Using the framework. Tech. rep. LRE 62-051 D-16, The FraCaS Consortium.

Dagan, Ido, Oren Glickman & Bernardo Magnini. 2006. The PASCAL recognising

textual entailment challenge. In Machine learning challenges. Evaluating predic-

tive uncertainty, visual object classification, and recognising tectual entailment,

177–190. New York, NY: Springer.

Duchi, John, Elad Hazan & Yoram Singer. 2011. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning

Research (JMLR) 12(Jul). 2121–2159.

Dummett, Michael A. E. 1991. The logical basis of metaphysics. Cambridge, MA:

Harvard University Press.

Dyer, Chris, Miguel Ballesteros, Wang Ling, Austin Matthews & Noah A. Smith.

http://arxiv.org/abs/1606.01781
http://arxiv.org/abs/1606.01781

BIBLIOGRAPHY 146

2015. Transition-based dependency parsing with stack long short-term memory.

In Proceedings of the 53rd annual meeting of the Association for Computational

Linguistics and the 7th international joint conference on natural language process-

ing (ACL-IJCNLP), volume 1: Long papers, 334–343. Beijing, China: Association

for Computational Linguistics.

Dyer, Chris, Adhiguna Kuncoro, Miguel Ballesteros & Noah A. Smith. 2016. Recur-

rent neural network grammars. In Proceedings of the 2016 conference of the North

American chapter of the Association for Computational Linguistics: Human lan-

guage technologies (NAACL-HLT), 199–209. San Diego, California: Association

for Computational Linguistics.

Elman, Je↵rey L. 1989. Representation and structure in connectionist models. Tech.

Rep. 8903 Center for Research in Language.

Elman, Je↵rey L. 1990. Finding structure in time. Cognitive science 14(2). 179–211.

Elman, Je↵rey L. 1991. Distributed representations, simple recurrent networks, and

grammatical structure. Machine learning 7(2–3). 195–225.

Emami, Ahmad & Frederick Jelinek. 2005. A neural syntactic language model. Ma-

chine learning 60(1–3). 195–227.

Fellbaum, Christiane. 2010. WordNet. In Theory and applications of ontology: Com-

puter applications, 231–243. New York, NY: Springer.

Francez, Nissim, Roy Dyckho↵ & Gilad Ben-Avi. 2010. Proof-theoretic semantics for

subsentential phrases. Studia Logica 94(3). 381–401.

Francis, W. Nelson & Henry Kucera. 1979. Brown corpus manual. Brown University.

Fried, Daniel, Tamara Polajnar & Stephen Clark. 2015. Low-rank tensors for verbs in

compositional distributional semantics. In Proceedings of the 53rd annual meet-

ing of the Association for Computational Linguistics and the 7th international

joint conference on natural language processing (ACL-IJCNLP), volume 2: Short

papers, 731–736. Beijing, China: Association for Computational Linguistics.

Fyodorov, Yaroslav, Yoad Winter & Nissim Francez. 2000. A natural logic infer-

ence system. In Proceedings of the 2nd workshop on inference in computational

semantics (ICoS).

Garcez, A. S. d’Avila, Krysia Broda & Dov M. Gabbay. 2001. Symbolic knowledge

BIBLIOGRAPHY 147

extraction from trained neural networks: A sound approach. Artificial Intelligence

125(1). 155–207.

Giampiccolo, Danilo, Bernardo Magnini, Ido Dagan & Bill Dolan. 2007. The third

PASCAL recognizing textual entailment challenge. In Proceedings of the ACL-

PASCAL workshop on textual entailment and paraphrasing, 1–9. Prague: Associ-

ation for Computational Linguistics.

Giles, C. Lee, Cli↵ord B. Miller, Dong Chen, Guo-Zheng Sun, Hsing-Hen Chen & Yee-

Chun Lee. 1992. Extracting and learning an unknown grammar with recurrent

neural networks. In Advances in neural information processing systems (NIPS),

317–324.

Glorot, Xavier & Yoshua Bengio. 2010. Understanding the di�culty of training deep

feedforward neural networks. In Proceedings of the international conference on

artificial intelligence and statistics (AISTATS), vol. 9, 249–256.

Goller, Christoph & Andreas Küchler. 1996. Learning task-dependent distributed

representations by backpropagation through structure. In Proceedings of the IEEE

international conference on neural networks, vol. 1, 347–352. IEEE.

Goodfellow, Ian, Yoshua Bengio & Aaron Courville. 2016. Deep learning. Book in

preparation for MIT Press. http://www.deeplearningbook.org.

Grefenstette, Edward. 2013. Towards a formal distributional semantics: Simulating

logical calculi with tensors. In Proceedings of the second joint conference on lexical

and computational semantics (*SEM), volume 1: Proceedings of the main confer-

ence and the shared task: Semantic textual similarity, 1–10. Atlanta, Georgia:

Association for Computational Linguistics.

Grefenstette, Edward, Karl Moritz Hermann, Mustafa Suleyman & Phil Blunsom.

2015. Learning to transduce with unbounded memory. In Advances in neural

information processing systems (NIPS), 1828–1836.

Grefenstette, Edward & Mehrnoosh Sadrzadeh. 2013. Multi-step regression learning

for compositional distributional semantics.

Grefenstette, Edward, Mehrnoosh Sadrzadeh, Stephen Clark, Bob Coecke & Stephen

Pulman. 2014. Concrete sentence spaces for compositional distributional models

of meaning. In Computing meaning, 71–86. New York, NY: Springer.

http://www.deeplearningbook.org

BIBLIOGRAPHY 148

Hallnäs, Lars & Peter Schroeder-Heister. 1990. A proof-theoretic approach to logic

programming. I. Clauses as rules. Journal of Logic and Computation 1(2). 261–

283.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren & Jian Sun. 2015. Delving deep into

rectifiers: Surpassing human-level performance on ImageNet classification. In

Proceedings of the IEEE international conference on computer vision (ICCV),

1026–1034.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford,

UK: Blackwell.

Henderson, James. 2004. Discriminative training of a neural network statistical parser.

In Proceedings of the 42nd meeting of the Association for Computational Linguis-

tics (ACL), main volume, 95–102. Barcelona, Spain.

Hochreiter, Sepp & Jürgen Schmidhuber. 1997. Long short-term memory. Neural

computation 9(8). 1735–1780.

Hornik, Kurt, Maxwell Stinchcombe & Halbert White. 1989. Multilayer feedforward

networks are universal approximators. Neural networks 2(5). 359–366.

Huet, Gérard. 1997. The zipper. Journal of functional programming 7(5). 549–554.

Icard III, Thomas F. 2012. Inclusion and exclusion in natural language. Studia Logica

100(4). 705–725.

Icard III, Thomas F. & Lawrence S. Moss. 2013a. A complete calculus of mono-

tone and antitone higher-order functions. Proceedings of Topology, Algebra, and

Categories in Logic (TACL) 96–100.

Icard III, Thomas F. & Lawrence S. Moss. 2013b. Recent progress on monotonicity.

Linguistic Issues in Language Technology (LiLT) 9(7). 167–194.

Io↵e, Sergey & Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of the 32nd

international conference on machine learning (ICML), 448–456.

Irsoy, Ozan & Claire Cardie. 2014. Deep recursive neural networks for composition-

ality in language. In Advances in neural information processing systems (NIPS),

2096–2104.

Iyyer, Mohit, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher & Hal

BIBLIOGRAPHY 149

Daumé III. 2014. A neural network for factoid question answering over para-

graphs. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), 633–644. Doha, Qatar: Association for Computa-

tional Linguistics.

Ji, Yangfeng & Jacob Eisenstein. 2015. One vector is not enough: Entity-augmented

distributed semantics for discourse relations. Transactions of the Association for

Computational Linguistics (TACL) 3. 329–344.

Joulin, Armand & Tomas Mikolov. 2015. Inferring algorithmic patterns with stack-

augmented recurrent nets. In Advances in neural information processing systems

(NIPS), 190–198.

Jozefowicz, Rafal, Oriol Vinyals, Mike Schuster, Noam Shazeer & Yonghui Wu. 2016.

Exploring the limits of language modeling. http://arxiv.org/abs/1602.02410.

Kádár, Ákos, Grzegorz Chrupa la & Afra Alishahi. 2016. Representation of linguistic

form and function in recurrent neural networks. http://arxiv.org/abs/1602.

08952.

Kalchbrenner, Nal, Edward Grefenstette & Phil Blunsom. 2014. A convolutional

neural network for modelling sentences. In Proceedings of the 52nd annual meeting

of the Association for Computational Linguistics (ACL), volume 1: Long papers,

655–665. Baltimore, Maryland: Association for Computational Linguistics.

Karpathy, Andrej, Justin Johnson & Fei-Fei Li. 2015. Visualizing and understanding

recurrent networks. http://arxiv.org/abs/1506.02078.

Katz, Jerrold J. 1972. Semantic theory. New York: Harper & Row.

Kiperwasser, Eliyahu & Yoav Goldberg. 2016. Easy-first dependency parsing with

hierarchical tree LSTMs. http://arxiv.org/abs/1603.00375.

Kiros, Ryan, Yukun Zhu, Ruslan R. Salakhutdinov, Richard Zemel, Raquel Urtasun,

Antonio Torralba & Sanja Fidler. 2015. Skip-thought vectors. In Advances in

neural information processing systems (NIPS), 3276–3284.

Klein, Dan & Christopher D. Manning. 2003. Accurate unlexicalized parsing. In Pro-

ceedings of the 41st annual meeting of the Association for Computational Linguis-

tics (ACL), 423–430. Sapporo, Japan: Association for Computational Linguistics.

http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1602.08952
http://arxiv.org/abs/1602.08952
http://arxiv.org/abs/1506.02078
http://arxiv.org/abs/1603.00375

BIBLIOGRAPHY 150

Kotlerman, Lili, Ido Dagan, Idan Szpektor & Maayan Zhitomirsky-Ge↵et. 2010. Di-

rectional distributional similarity for lexical inference. Natural Language Engi-

neering 16(4). 359–389.

Krishna, Ranjay, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua

Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael

Bernstein & Li Fei-Fei. 2016. Visual Genome: Connecting language and vision us-

ing crowdsourced dense image annotations. http://arxiv.org/abs/1602.07332.

Kruszewski, German, Denis Paperno & Marco Baroni. 2015. Deriving boolean struc-

tures from distributional vectors. Transactions of the Association for Computa-

tional Linguistics (TACL) 3. 375–388.

Lai, Alice & Julia Hockenmaier. 2014. Illinois-LH: A denotational and distributional

approach to semantics. In Proceedings of the 8th international workshop on se-

mantic evaluation (SemEval), 329–334. Dublin, Ireland: Association for Compu-

tational Linguistics and Dublin City University.

Lambek, Joachim. 1958. The mathematics of sentence structure. The American

Mathematical Monthly 65(3). 154–170.

LeCun, Yann, Léon Bottou, Yoshua Bengio & Patrick Ha↵ner. 1998. Gradient-based

learning applied to document recognition. Proceedings of the IEEE 86(11). 2278–

2324.

Levesque, Hector J. 2014. On our best behaviour. Artificial Intelligence 212. 27–35.

Levy, Omer, Ido Dagan & Jacob Goldberger. 2014. Focused entailment graphs for

open IE propositions. In Proceedings of the eighteenth conference on computa-

tional natural language learning (CoNLL). Ann Arbor, Michigan: Association for

Computational Linguistics.

Lewis, David. 1970. General semantics. Synthese 22(1/2). 18–67.

Li, Jiwei, Xinlei Chen, Eduard Hovy & Dan Jurafsky. 2016. Visualizing and under-

standing neural models in NLP. In Proceedings of the 2016 conference of the North

American chapter of the Association for Computational Linguistics: Human lan-

guage technologies (NAACL-HLT), 681–691. San Diego, California: Association

for Computational Linguistics.

Li, Jiwei, Thang Luong, Dan Jurafsky & Eduard Hovy. 2015. When are tree structures

http://arxiv.org/abs/1602.07332

BIBLIOGRAPHY 151

necessary for deep learning of representations? In Proceedings of the 2015 confer-

ence on empirical methods in natural language processing (EMNLP), 2304–2314.

Lisbon, Portugal: Association for Computational Linguistics.

Liang, Percy, Michael I. Jordan & Dan Klein. 2013. Learning dependency-based

compositional semantics. Computational Linguistics 39(2). 389–446.

Liu, Yang, Chengjie Sun, Lei Lin & Xiaolong Wang. 2016. Learning natural language

inference using bidirectional LSTM model and inner-attention. http://arxiv.

org/abs/1605.09090.

Luong, Minh-Thang, Hieu Pham & Christopher D. Manning. 2015a. E↵ective ap-

proaches to attention-based neural machine translation. In Proceedings of the

2015 conference on empirical methods in natural language processing (EMNLP),

1412–1421. Lisbon, Portugal: Association for Computational Linguistics.

Luong, Thang, Ilya Sutskever, Quoc Le, Oriol Vinyals & Wojciech Zaremba. 2015b.

Addressing the rare word problem in neural machine translation. In Proceedings of

the 53rd annual meeting of the Association for Computational Linguistics and the

7th international joint conference on natural language processing (ACL-IJCNLP),

volume 1: Long papers, 11–19. Beijing, China: Association for Computational

Linguistics.

Maas, Andrew L., Awni Y. Hannun & Andrew Y. Ng. 2013. Rectifier nonlinearities

improve neural network acoustic models. In Proceedings of the ICML workshop

on deep learning for audio, speech and language processing.

Van der Maaten, Laurens & Geo↵rey Hinton. 2008. Visualizing data using t-SNE.

Journal of Machine Learning Research (JMLR) 9(Nov). 2579–2605.

MacCartney, Bill. 2009. Natural language inference. Stanford, CA: Stanford Univer-

sity dissertation.

MacCartney, Bill & Christopher D. Manning. 2009. An extended model of natural

logic. In Proceedings of the eight international conference on computational seman-

tics (IWCS), 140–156. Tilburg, The Netherlands: Association for Computational

Linguistics.

Magnini, Bernardo, Roberto Zanoli, Ido Dagan, Kathrin Eichler, Guenter Neumann,

Tae-Gil Noh, Sebastian Padó, Asher Stern & Omer Levy. 2014. The Excitement

http://arxiv.org/abs/1605.09090
http://arxiv.org/abs/1605.09090

BIBLIOGRAPHY 152

open platform for textual inferences. In Proceedings of 52nd annual meeting of the

Association for Computational Linguistics (ACL): System demonstrations, 43–48.

Baltimore, Maryland: Association for Computational Linguistics.

Marelli, Marco, Luisa Bentivogli, Marco Baroni, Ra↵aella Bernardi, Stefano Menini

& Roberto Zamparelli. 2014a. SemEval-2014 task 1: Evaluation of compositional

distributional semantic models on full sentences through semantic relatedness and

textual entailment. In Proceedings of the 8th international workshop on seman-

tic evaluation (SemEval), 1–8. Dublin, Ireland: Association for Computational

Linguistics and Dublin City University.

Marelli, Marco, Stefano Menini, Marco Baroni, Luisa Bentivogli, Ra↵aella bernardi

& Roberto Zamparelli. 2014b. A SICK cure for the evaluation of compositional

distributional semantic models. In Nicoletta Calzolari, Khalid Choukri, Thierry

Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno,

Jan Odijk & Stelios Piperidis (eds.), Proceedings of the ninth international confer-

ence on language resources and evaluation (LREC), 216–223. Reykjavik, Iceland:

European Language Resources Association (ELRA).

de Marne↵e, Marie-Catherine, Christopher D. Manning & Christopher Potts. 2012.

Did it happen? The pragmatic complexity of veridicality assessment. Computa-

tional Linguistics 38(2). 301–333.

de Marne↵e, Marie-Catherine, Anna N. Ra↵erty & Christopher D. Manning. 2008.

Finding contradictions in text. In Proceedings of ACL-08: HLT, 1039–1047.

Columbus, Ohio: Association for Computational Linguistics.

Mikolov, Tomas, Kai Chen, Greg S. Corrado & Je↵rey Dean. 2013a. E�cient estima-

tion of word representations in vector space. http://arxiv.org/abs/1301.3781.

Mikolov, Tomáš, Martin Karafiát, Lukáš Burget, Jan Černockỳ & Sanjeev Khudan-

pur. 2010. Recurrent neural network based language model. In Proceedings of the

eleventh annual conference of the International Speech Communication Associa-

tion (INTERSPEECH), 1045–1048.

Mikolov, Tomas, Wen-tau Yih & Geo↵rey Zweig. 2013b. Linguistic regularities in

continuous space word representations. In Proceedings of the 2013 conference of

the North American chapter of the Association for Computational Linguistics:

http://arxiv.org/abs/1301.3781

BIBLIOGRAPHY 153

Human language technologies (NAACL-HLT), 746–751. Atlanta, Georgia: Asso-

ciation for Computational Linguistics.

Miller, George A. 1995. WordNet: a lexical database for english. Communications of

the ACM 38(11).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski et al. 2015. Human-level control through deep reinforcement learning.

Nature 518(7540). 529–533.

Montague, Richard. 1973. The proper treatment of quantification in ordinary english.

In Approaches to natural language, 221–242. New York, NY: Springer.

Mou, Lili, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang & Zhi Jin. 2016a. How

transferable are neural networks in NLP applications? http://arxiv.org/abs/

1603.06111.

Mou, Lili, Men Rui, Ge Li, Yan Xu, Lu Zhang, Rui Yan & Zhi Jin. 2016b. Natural lan-

guage inference by tree-based convolution and heuristic matching. In Proceedings

of 54th annual meeting of the Association for Computational Linguistics (ACL).

Berlin, Germany.

Narasimhan, Karthik, Tejas Kulkarni & Regina Barzilay. 2015. Language understand-

ing for text-based games using deep reinforcement learning. In Proceedings of the

2015 conference on empirical methods in natural language processing (EMNLP),

1–11. Lisbon, Portugal: Association for Computational Linguistics.

Nivre, Joakim. 2003. An e�cient algorithm for projective dependency parsing. In

Proceedings of the 8th international workshop on parsing technologies (IWPT).

Padó, Sebastian, Tae-Gil Noh, Asher Stern, Rui Wang & Roberto Zanoli. 2015. Design

and realization of a modular architecture for textual entailment. Natural Language

Engineering 21(2). 167–200.

Parikh, Ankur P., Oscar Täckström, Dipanjan Das & Jakob Uszkoreit. 2016. A

decomposable attention model for natural language inference. http://arxiv.

org/abs/1606.01933.

Partee, Barbara H. 1984. Compositionality. In Varieties of formal semantics: Proceed-

ings of the fourth Amsterdam colloquium, 281–311. Dordrecht: Foris Publications.

http://arxiv.org/abs/1603.06111
http://arxiv.org/abs/1603.06111
http://arxiv.org/abs/1606.01933
http://arxiv.org/abs/1606.01933

BIBLIOGRAPHY 154

Paulus, Romain, Richard Socher & Christopher D. Manning. 2014. Global belief

recursive neural networks. In Advances in neural information processing systems

(NIPS), 2888–2896.

Pavlick, Ellie, Pushpendre Rastogi, Juri Ganitkevitch, Benjamin Van Durme & Chris

Callison-Burch. 2015. PPDB 2.0: Better paraphrase ranking, fine-grained entail-

ment relations, word embeddings, and style classification. In Proceedings of the

53rd annual meeting of the Association for Computational Linguistics and the

7th international joint conference on natural language processing (ACL-IJCNLP),

volume 2: Short papers, 425–430. Beijing, China: Association for Computational

Linguistics.

Pennington, Je↵rey, Richard Socher & Christopher Manning. 2014. GloVe: Global

vectors for word representation. In Proceedings of the 2014 conference on empir-

ical methods in natural language processing (EMNLP), 1532–1543. Doha, Qatar:

Association for Computational Linguistics.

Pham, Nghia The, Germán Kruszewski, Angeliki Lazaridou & Marco Baroni. 2015.

Jointly optimizing word representations for lexical and sentential tasks with the C-

PHRASE model. In Proceedings of the 53rd annual meeting of the Association for

Computational Linguistics and the 7th international joint conference on natural

language processing (ACL-IJCNLP), volume 1: Long papers, 971–981. Beijing,

China: Association for Computational Linguistics.

Pratt, Lorien Y., Jack Mostow, Candace A. Kamm & Ace A. Kamm. 1991. Direct

transfer of learned information among neural networks. In Proceedings of the ninth

national conference on artificial intelligence (AAAI), volume 2, 584–589. AAAI.

Prawitz, Dag. 1965. Natural deduction: A proof-theoretical study. Mineola, NY: Dover

Publications.

Rocktäschel, Tim, Edward Grefenstette, Moritz Hermann, Karl, Tomáš Kočiskỳ &

Phil Blunsom. 2016. Reasoning about entailment with neural attention. In Pro-

ceedings of the international conference on learning representations (ICLR).

Rocktäschel, Tim & Sebastian Riedel. 2016. Learning knowledge base inference with

BIBLIOGRAPHY 155

neural theorem provers. In Proceedings of the 5th workshop on automated knowl-

edge base construction (AKBC), 45–50. San Diego, CA: Association for Compu-

tational Linguistics.

Rumelhart, David E., Geo↵rey E. Hinton & Ronald J. Williams. 1986. Learning

representations by back-propagating errors. Nature 323. 533–536.

Sánchez-Valencia, Vı́ctor. 1991. Categorial grammar and natural reasoning. ILTI

Publication Series for Logic, Semantics, and Philosophy of Language LP-91-08

University of Amsterdam Amsterdam, The Netherlands.

Shieber, Stuart M. 1983. Sentence disambiguation by a shift-reduce parsing technique.

In Proceedings of the 21st annual meeting of the Association for Computational

Linguistics (ACL), 113–118. Cambridge, Massachusetts: Association for Compu-

tational Linguistics.

Shwartz, Vered, Yoav Goldberg & Ido Dagan. 2016. Improving hypernymy detection

with an integrated path-based and distributional method. In Proceedings of 54th

annual meeting of the Association for Computational Linguistics (ACL). Berlin,

Germany.

Socher, Richard, Brody Huval, Christopher D. Manning & Andrew Y. Ng. 2012.

Semantic compositionality through recursive matrix-vector spaces. In Proceedings

of the 2012 joint conference on empirical methods in natural language processing

and computational natural language learning (EMNLP-CoNLL), 1201–1211. Jeju

Island, Korea: Association for Computational Linguistics.

Socher, Richard, Andrej Karpathy, Quoc V. Le, Christopher D. Manning & An-

drew Y. Ng. 2014. Grounded compositional semantics for finding and describing

images with sentences. Transactions of the Association for Computational Lin-

guistics (TACL) 2. 207–218.

Socher, Richard, Cli↵ C. Lin, Chris Manning & Andrew Y. Ng. 2011a. Parsing natural

scenes and natural language with recursive neural networks. In Proceedings of the

28th international conference on machine learning (ICML), 129–136.

Socher, Richard, Je↵rey Pennington, Eric H. Huang, Andrew Y. Ng & Christopher D.

Manning. 2011b. Semi-supervised recursive autoencoders for predicting senti-

ment distributions. In Proceedings of the 2011 conference on empirical methods

BIBLIOGRAPHY 156

in natural language processing (EMNLP), 151–161. Edinburgh, UK: Association

for Computational Linguistics.

Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,

Andrew Ng & Christopher Potts. 2013. Recursive deep models for semantic com-

positionality over a sentiment treebank. In Proceedings of the 2013 conference on

empirical methods in natural language processing (EMNLP), 1631–1642. Seattle,

Washington: Association for Computational Linguistics.

Srivastava, Nitish, Geo↵rey E. Hinton, Alex Krizhevsky, Ilya Sutskever & Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research (JMLR) 15(1). 1929–1958.

Sutskever, Ilya, Oriol Vinyals & Quoc V. Le. 2014. Sequence to sequence learning with

neural networks. In Advances in neural information processing systems (NIPS),

3104–3112.

Szabolcsi, Anna. 2009. Quantification. Cambridge, UK: Cambridge University Press.

Tai, Kai Sheng, Richard Socher & Christopher D. Manning. 2015. Improved seman-

tic representations from tree-structured long short-term memory networks. In

Proceedings of the 53rd annual meeting of the Association for Computational Lin-

guistics and the 7th international joint conference on natural language processing

(ACL-IJCNLP), volume 1: Long papers, 1556–1566. Beijing, China: Association

for Computational Linguistics.

Theano Development Team. 2016. Theano: A Python framework for fast computation

of mathematical expressions. http://arxiv.org/abs/1605.02688.

Tieleman, Tijmen & Geo↵rey Hinton. 2012. Lecture 6.5: RMSProp: Divide the

gradient by a running average of its recent magnitude. Coursera course: Neural

Networks for Machine Learning.

Titov, Ivan & James Henderson. 2010. A latent variable model for generative depen-

dency parsing. In Trends in parsing technology, New York, NY: Springer.

Van Eijck, Jan & Christina Unger. 2010. Computational semantics with functional

programming. Cambridge, UK: Cambridge University Press.

Vendrov, Ivan, Ryan Kiros, Sanja Fidler & Raquel Urtasun. 2016. Order-embeddings

of images and language. In Proceedings of the international conference on learning

http://arxiv.org/abs/1605.02688

BIBLIOGRAPHY 157

representations (ICLR).

Vinyals, Oriol, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever & Geo↵rey

Hinton. 2015. Grammar as a foreign language. In Advances in neural information

processing systems (NIPS), 2773–2781.

Wang, Rui & Günter Neumann. 2007. Recognizing textual entailment using sentence

similarity based on dependency tree skeletons. In Proceedings of the ACL-PASCAL

workshop on textual entailment and paraphrasing, 36–41. Prague: Association for

Computational Linguistics.

Wang, Shuohang & Jing Jiang. 2016. Learning natural language inference with

LSTM. In Proceedings of the 2016 conference of the North American chapter

of the Association for Computational Linguistics: Human language technologies

(NAACL-HLT), 1442–1451. San Diego, California: Association for Computational

Linguistics.

Wang, Sida & Christopher D. Manning. 2012. Baselines and bigrams: Simple, good

sentiment and topic classification. In Proceedings of the 50th annual meeting of

the Association for Computational Linguistics (ACL), volume 2: Short papers,

90–94. Jeju Island, Korea: Association for Computational Linguistics.

Ward, Gregory & Betty Birner. 2004. Information structure and non-canonical syntax.

In Laurence R. Horn & Gregory Ward (eds.), Handbook of pragmatics, 153–174.

Oxford, UK: Blackwell.

Watanabe, Yotaro, Junta Mizuno, Eric Nichols, Naoaki Okazaki & Kentaro Inui. 2012.

A latent discriminative model for compositional entailment relation recognition

using natural logic. In Proceedings of COLING, 2805–2820. Mumbai, India: The

COLING 2012 Organizing Committee.

Wen, Tsung-Hsien, Milica Gasic, Nikola Mrkšić, Pei-Hao Su, David Vandyke & Steve

Young. 2015. Semantically conditioned LSTM-based natural language generation

for spoken dialogue systems. In Proceedings of the 2015 conference on empirical

methods in natural language processing (EMNLP), 1711–1721. Lisbon, Portugal:

Association for Computational Linguistics.

Weston, Jason, Antoine Bordes, Sumit Chopra & Tomas Mikolov. 2016. Towards

AI-complete question answering: A set of prerequisite toy tasks. In Proceedings

BIBLIOGRAPHY 158

of the international conference on learning representations (ICLR), .

Weston, Jason, Sumit Chopra & Antoine Bordes. 2015. Memory networks. In Pro-

ceedings of the international conference on learning representations (ICLR).

Widdows, Dominic. 2004. Geometry and meaning. Stanford, CA: CSLI Publications.

Widdows, Dominic & Trevor Cohen. 2014. Reasoning with vectors: a continuous

model for fast robust inference. Logic Journal of IGPL 23(2). 141–173.

Winograd, Terry. 1972. Understanding natural language. Cognitive Psychology 3(1).

1–191.

Woods, William A., Ronald M. Kaplan, Bonnie Nash-Webber & Center

Manned Spacecraft Center. 1972. The lunar sciences natural language information

system: Final report. Tech. rep. BBN Technologies Cambridge, MA.

Yin, Wenpeng, Hinrich Schütze, Bing Xiang & Bowen Zhou. 2015. ABCNN: attention-

based convolutional neural network for modeling sentence pairs. http://arxiv.

org/abs/1512.05193.

Young, Peter, Alice Lai, Micah Hodosh & Julia Hockenmaier. 2014. From image de-

scriptions to visual denotations: New similarity metrics for semantic inference over

event descriptions. Transactions of the Association for Computational Linguistics

2. 67–78.

Zeiler, Matthew D. 2012. ADADELTA: An adaptive learning rate method. http:

//arxiv.org/abs/1212.5701.

Zettlemoyer, Luke S. & Michael Collins. 2005. Learning to map sentences to log-

ical form: Structured classification with probabilistic categorial grammars. In

Proceedings of the 21st conference on uncertainty in artificial intelligence (UAI).

Zhang, Xiang, Junbo Zhao & Yann LeCun. 2015. Character-level convolutional net-

works for text classification. In Advances in neural information processing systems

(NIPS), 649–657.

Zhang, Xingxing, Liang Lu & Mirella Lapata. 2016. Top-down tree long short-term

memory networks. In Proceedings of the 2016 conference of the North American

chapter of the Association for Computational Linguistics: Human language tech-

nologies (NAACL-HLT), 310–320. San Diego, California: Association for Compu-

tational Linguistics.

http://arxiv.org/abs/1512.05193
http://arxiv.org/abs/1512.05193
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

	Abstract
	Acknowledgments
	Introduction
	Defining sentence meaning
	The truth-conditional view of meaning
	The relational view of meaning
	Choosing the relational view
	Pragmatics and sentence understanding
	The role of representations in semantic theory

	Computational semantics: Building systems
	Truth-conditional semantics
	Natural logic
	Distributed representations

	This dissertation

	Background and technical foundations
	Natural language inference and natural logic
	Projectivity
	Soundness and NLI
	Data for natural language inference

	Artificial neural networks
	Word embeddings in neural networks

	Neural networks for sentence encoding
	Recurrent neural networks
	Tree-structured neural networks
	A note on learning
	From sentence encoding to inference
	Other approaches to sentence encoding

	Additional prior work
	Reasoning in distributed representations
	Analyzing learned representations for language

	Logical reasoning in tree-structured models
	Introduction
	Methods
	Reasoning about lexical relations
	Learning to represent and infer natural logic relations
	Reasoning about lexical relations in WordNet
	Discussion

	Reasoning over recursive structure
	Experiments
	Results

	Reasoning with quantifiers and negation
	Experiments
	Results

	Discussion and conclusion

	Logical reasoning in sequence models
	Introduction
	Recursive structure in artificial data
	Testing sentence models on entailment
	Results and discussion
	Conclusion

	A new corpus for NLI
	Introduction
	Why not some other task?
	Corpora in semantics

	Training neural networks with existing data
	Results

	A new corpus for NLI
	Formulating a task definition
	Data collection
	Data validation
	The distributed corpus

	Understanding SNLI
	Common patterns and possible shortcuts
	SNLI and natural logic

	Conclusion

	Modeling natural language inference
	Introduction
	Establishing baselines for SNLI
	Excitement Open Platform models
	The lexicalized classifier
	Sentence-encoding models
	Analysis and discussion

	Transfer learning with SICK
	Discussion
	Subsequent work

	A fast unified parser-interpreter
	Introduction
	Related work
	The new model: SPINN
	Background: Shift-reduce parsing
	Composition and representation
	The tracking LSTM
	Parsing: Predicting transitions
	Implementation issues
	TreeRNN equivalence
	Inference speed

	NLI Experiments
	Models evaluated
	Results
	Testing on FraCaS
	Analysis and discussion

	Conclusion and future work

	Conclusion
	The contributions of this dissertation
	Future work
	Symbolic reasoning and sentence encoding
	Data for natural language inference
	Using tree structure in sentence encoding
	The future of learned models for sentence meaning

