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⚔ Adversarial Data Collection

Adversarial data collection (ADC) in this talk:

The practice of building datasets entirely out of 
examples on which a specific system fails.
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Bartolo et al. TACL ‘20; 
Kiela et al. NAACL ‘21;
(Le Bras et al. ICML ‘20)

https://aclanthology.org/2020.tacl-1.43/
https://aclanthology.org/2021.naacl-main.324/
https://arxiv.org/abs/2002.04108


🔎 tl;dr

● ADC seems promising as a way of 
collecting training data.

● ADC seems promising as a way of 
analyzing model behavior.
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🔎 tl;dr

● ADC seems promising as a way of 
comparing the robustness of a known set 
of models.

● ADC is unfixably broken as a way of 
creating benchmark test sets.
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🔎 tl;dr
Why?
● It’s obscuring problems with NLP evaluation 

rather than fixing them.
● It makes test sets that can’t measure the 

relative performance of models.
● It makes test sets that can’t measure the 

absolute performance of models.
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🔎 tl;dr

What should we do instead?
● Use ADC-based analyses as part of test 

set design.
● Build hard test sets the slow, simple way.
● It’s okay if they’re smaller!
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ADC obscures problems with NLP 
evaluation rather than fixing them.

7Bowman & Dahl NAACL ‘21

https://aclanthology.org/2021.naacl-main.385


🥅 The Goal 

We want benchmarks that measure the 
degree to which models can perform some 
specific language task on some specific 
language variety and topic domain.
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🔎 Validity
This includes:

● Comprehensive coverage of language variation.
● Test cases isolating all necessary task skills.
● No artifacts that let bad models score highly.

This is hard. 9



 🚨 The Problem
Benchmarking for language understanding is broken.
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🤷 Does ADC Help?
It looks like it helps!

● Because ADC guarantees that test sets will be hard for SotA 
models, it guarantees that those test sets won’t look broken.
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🤷 Does ADC Help?
…but it doesn’t.

● Making a dataset more difficult is distinct from making it 
more representative of the desired behavior.
○

● Empowering the adversary model to define the test 
distribution removes a key point of leverage.
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ADC obscures problems with NLP 
evaluation rather than fixing them.

13Bowman & Dahl NAACL ‘21

https://aclanthology.org/2021.naacl-main.385


ADC makes test sets that can’t measure 
the relative performance of models. 

14Phang et al. (under submission)

https://arxiv.org/abs/2111.08181


🥅 The Goal 

One of the chief uses of benchmark test 
sets is to establish fair comparisons 
between different systems.
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🥅 The Goal 

In other words, the ranking of systems on 
the benchmark should reflect their relative 
ability on the task.
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🥉 Ranking Artifacts

ADC introduces ranking artifacts:

Patterns in model rankings on 
benchmarks that are predictable but not 
due to model ability.
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🥉 Ranking Artifacts?
By design, if a model is tested on an 
adversarially-collected test set that was collected against 
that model, it will achieve zero accuracy…
 
…and sufficiently similar models will achieve low 
accuracy. 
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🥉 Ranking Artifacts

19Nie et al. ACL ‘20 
ANLI (ADC)

https://aclanthology.org/2020.acl-main.441


🥉 Ranking Artifacts

20Phang et al. (under submission) ANLI (ADC)

https://arxiv.org/abs/2111.08181


🥉 Ranking Artifacts

21Phang et al. (under submission)

AFLite

https://arxiv.org/abs/2111.08181


ADC makes test sets that can’t measure 
the relative performance of models. 

22Phang et al. (under submission)

https://arxiv.org/abs/2111.08181


ADC makes test sets that can’t measure 
the absolute performance of models. 
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🥅 The Goal 

We want benchmarks that measure the 
degree to which models can perform some 
specific language task on some specific 
language variety and topic domain.
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🥉 Ranking Artifacts Revisited
● By design, if a model is tested on an adversarially-collected test set 

that was collected against that model, it will achieve zero accuracy.
 
○ Sufficiently similar models will achieve low accuracy. 

● True as long as the model makes any errors or debatable judgments 
on any possible inputs.

● So, possible to target humans for 0% accuracy, too!
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🥉 Ranking Artifacts Revisited
If our technique reports that some humans achieve 0% 
competence at a language task, absolute scores originating 
from that technique aren’t informative.

Absolute score on an adversarially-collected test set is 
meaningless as a measure of model performance.
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🥉 Ranking Artifacts Revisited
Common DADC UIs make it relatively 
easy to accidentally skew subjective 
calls away from the target model:

27Wallace et al. ACL Findings ‘22

https://aclanthology.org/2022.findings-acl.18/


ADC makes test sets that can’t measure 
the absolute performance of models. 
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Detour: Underclaiming

29Bowman ACL ‘22

https://aclanthology.org/2022.acl-long.516/


⚔ ADC and Underclaiming
If results on ADC test sets are misrepresented as capturing absolute 
performance, they can feed into unjustified negative messages about 
the current state of the art:
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AFLite

https://dl.acm.org/doi/pdf/10.1145/3442188.3445922
https://dl.acm.org/doi/pdf/10.1145/3442188.3445922


⚔ ADC and Underclaiming
This phenomenon, underclaiming, is increasingly common, and it’s 
important that we learn to avoid it.
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Three Reasons Underclaiming
Is Dangerous

32Bowman ACL ‘22

https://aclanthology.org/2022.acl-long.516/


󰳘 The Health of the Field  
● We like to think of NLP as a scientific field.

● This means not accepting claims without good evidence.
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🗺 Managing Current Impacts  
● Underclaiming can be superficially appealing here: 

○ Arguing that systems don’t work should discourage their 
deployment, limiting the harms from biased or untrustworthy 
systems.

● But this approach backfires:

○ If operators of deployed systems realize that they can’t trust our 
assessments of system ability, they might not listen to any of our 
other concerns.
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🔮 Managing Future Impacts  
● We seem to be making progress, and it’s reasonable to expect that NLP 

technology will eventually get good.

● Many of the most important impacts from NLP deployments depend on 
systems working very well.

🥳: worldwide access to excellent education, medical advice, legal 
services, …

😬: abrupt mass unemployment, mass misinformation/surveillance, 
potential catastrophic risks, ...
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🔮 Managing Future Impacts  
● To manage these impacts, we’ll need to start the 

relevant technical work and policy work long before 
the impacts start to arrive.

● Widespread underclaiming makes it hard for the NLP 
community to take these issues seriously.
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👷 What Should We Do Instead? 
👷
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🩹 There’s No Easy Fix

Evaluating language understanding in 
machines for some task requires careful 
thinking about language, machines, and 
the task.
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👷 What Should We Do Instead?
Collect data the hard, slow, boring way:

● Figure out what phenomena and domains will be 
informative to study.

● Hire careful workers to collect a representative sample of 
those phenomena in those domains.

● Thoroughly validate those examples.
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👷 What Should We Do Instead?

This is slower, but not necessarily prohibitive:

● Large-scale pretraining means that benchmarks 
no longer need to come with large training sets…

● …and a big decrease in the importance of 
hyperparameter tuning makes it safer to launch 
benchmarks with small test sets.

Combining perspectives should help:

● Diverse, well-trained, non-expert annotators can 
help with language variation.

● Expert feedback and intervention during data 
collection can help isolate skills and reduce 
artifacts.
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👷 What Should We Do Instead?

Room for creativity here:
● Use DADC to identify phenomena to study (cf. 

ANLIzing ANLI)

● Use DADC where unqualified humans are the 
adversary (cf. QuALITY)
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https://aclanthology.org/2022.scil-1.3
https://arxiv.org/abs/2112.08608


ADC is valuable.
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ADC does not produce 
usable test sets. 
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…but we don’t need it to.
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Thanks to Schmidt Futures, the US NSF, Apple, Samsung, Intuit, and Google for funding. See papers for project details.
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🤷 Does ADC Help?

● Empirically, ADC data can get arbitrarily far from the task under study…
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