What?

We introduce the automatic annotation of noun phras-
es in parsed sentences with tags from a fine-grained
semantic animacy hierarchy. These tags reflect an im-
portant lexical semantic property, and show promise
as features for a number of NLP tasks.

S
A sample sentence from the corpus with
annotations shown in red.
NPuac VP
/\
DT NN
a robot
VBN NPvEH PP PP
drove RN
PRPShuman NN IN NPpLACE IN NPTT""E
on
my car to NlilP NNP
Mountain View Tuesday

Why?

e The classes capture the degree to which the entity described by an NP is capa-
ble of human-like volition.

e Major predictor of verbal argument selection; triggers a range of morphological

and syntactic phenomena across languages (Levin and Rappaport Hovav, 2005).

e Annotating a corpus with this information can faclilitate:
e Natural language generation
e Statistical language modeling
e Parse selection
e Machine translation

e Corpus lexical semantics
(Zaenen et al., 2004; @vrelid and Nivre, 2007)

e All existing classification work classifies only the basic ANIMATE/INANIMATE contrast
(Ji and Lin, 2009; @vrelid, 2005: Orasan and Evans, 2001).

e All existing work on animacy in English uses outside lexical resources.
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Classes and Corpus

e Zaenen et al. (2004)'s annotation scheme and corpus:

* Ten classes: HUMAN, ORG (organizations), ANIMAL, MAC (automata), veH (vehicles),
PLACE, TIME, CONCRETE (other physical objects), Noncone (abstract entities), and
mix (heterogeneous groups).

* An annotated subset of the hand-parsed NXT Switchboard corpus of con-
versational American English (Calhoun et al., 2010).

e About 110,000 sentences with about 300,000 NPs.
e Data division: training (80%), development (10%), test (10%)

Note: Some feature selection was inadvertently done before this split was
finalized. All relevant experiments have been repeated on the current split.

Model and Features

e Maximum entropy classifier (Berger et al., 1996) with three feature bundles:

e Bag of words features capture every word in the NP:
-HASWD-(POS-tag-)word
“the mayor”
> {HASWD-DI-the, HASWD-the, HASWD-NN-mayor, HASWD-mayor}

e Internal syntactic features reflect that the head of an NP typically carries
the bulk of the information on animacy. Adding orthograph-

IC shape helps with unseen words.
HEAD-tag-word >
‘HEADSHAPE-tag-shape /\
“The Panama hat | gave the mayor” NP HumAn VP
> {HEAD-NN-hat, HEADSHAPE-NN-L} PI%P

e External syntactic features reflect that ]
verbs and prepositions tend to restrict the
classes of their arguments:

-SUBJ(-OF-verb)

-DOBJ(-OF- verb)

-PCOMP(-OF-prep)(-WITH-verb)
“I called [the mayor], ,”

> {DOBJ, DOBJ-OF-called}

e Features which introduced limited depen-
dencies between classes helped with mx NPs, but did not help overall perfor-
mance, and were scrapped.

VBP
've

VBN
used

References

C.F. Baker, C.J. Fillmore, and J.B. Lowe. 1998. The Berkeley Framenet Project. Proc. of the 36th Annual Meet-

ing of the Association for Computational Linguistics and 17th International Conference on Computational
Linguistics.

A.L. Berger, V.J Della Pietra, and S.A. Della Pietra. 1996. A maximum entropy approach to natural language
processing. Computational Linguistics, 22(1).

S. Calhoun, J. Carletta, J.M. Brenier, N. Mayo, D. Jurafsky, M. Steedman, and D. Beaver. 2010. The NXT-for-
mat Switchboard Corpus. Language resources and evaluation, 44(4).

C. Fellbaum. 2010. Wordnet. In Theory and Applications of Ontology: Computer Applications. Springer.
H. Ji and D. Lin. 2009. Gender and animacy knowledge discovery from web-scale N-grams for unsupervised

person mention detection. Proc. of the 23rd Pacific Asia Conference on Language, Information and Com-

putation.

T

VP

T~

NP quman

PRP
mine

Automatic animacy classification

Samuel Bowman! and Harshit Chopra?

'Department of Linguistics, Stanford University 2Department of Computer Science, Stanford University

Results and Discussion

e Qur baseline always chooses the
most frequent class, NONCONC.

e Binary ANIMATE/INANIMATE clas-
sification: 93.50% accuracy.
Baseline labeling each NP ANIMATE:

53.79%.

e Automatically parsing the
corpus with the Stanford parser
(Klein and Manning, 2002) gener-
ated correct NPs with Pr. 88.63%
/ Rec. 7/3.51%. For these NPs:
35.43% accuracy.

e Many errors from pronouns
whose referents are not specified
within the sentence:

* [n the tree below, for ex-
ample, the model wrongly, but
plausibly, classified “mine” as
NONCONC.

e Subtle distinction between plural Hu-
MAN (an incidental group) and ora (a
group with voice or purpose).

e High accuracy on common
classes and well-defined classes
like Time. Others may need more
sophisticated features.

Future Work

PP o

Class | Count | Precision | Recall
VEH | 534 88.56 39.14
TIME | 1,101 88.24 80.38
NONCONC | 12,173 | 83.39 03.32
MAC | 79 63.33 24.05
PLACE | 754 64.89 63.00
ORG | 1,208 | 58.26 27.73

MIX | 29 7.14 345

CONCRETE | 1402 58.82 37.58
ANIMAL | 137 69.44 18.25
HUMAN | 11,320 | 91.19 93.30
Overall | 28,737 | Accuracy: 84.90

Counts and performance for each class

Only these features: | Accuracy (%)
Bag of words | 83.04
Internal Syntactic | 75.85
External Syntactic | 50.35

All but these features: | —

Bag of words | 77.02
Internal syntactic | 83.36
External syntactic | 84.58
Most frequent class | 42.36
Full model | 84.90

Performance for each feature bundle alone,

and with each feature bundle removed

FrameNet (Baker et al., 1998):

IN  NPconcrete

on /\
JJ NN
treated wood

Adding coreference resolution between sentences would ad-
dress many errors without requiring outside data sources.

Features from WordNet (Fellbaum, 2010) and

e Synonyms and hypernyms would help with un-
known words (Orasan And Evans 2001).

e Semantic role labels would help to capture ver-

bal animacy restrictions. Might rescue the rela-
tively ineffective external syntactic features.
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